

GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

MINIMUM SPANNING TREES

MINIMUM SPANNING TREE

- Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight
- Applications
- Communications networks
- Transportation networks

EXERCISE MST

- Show an MST of the following graph.

CYCLE PROPERTY

- Cycle Property:

- Let T be a minimum spanning tree of a weighted graph G
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T
- For every edge f of C, weight $(f) \leq$ weight (e)
- Proof by contradiction:
- If weight $(f)>$ weight (e) we can get a spanning tree of smaller weight by replacing e with f

$\sqrt{\text { Replacing } f \text { with } e \text { yields }} \begin{aligned} & \text { a better spanning tree }\end{aligned}$

PARTITION PROPERTY

- Partition Property:

- Consider a partition of the vertices of G into subsets U and V
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of G containing edge e
- Proof by contradition:
- Let T be an MST of G
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property,

$$
\text { weight }(f) \leq \text { weight }(e)
$$

- Thus, weight $(f)=$ weight (e)
- We obtain another MST by replacing f with e

Replacing f with e yields
another MST

PRIM-JARNIK'S ALGORITHM

- We pick an arbitrary vertex S and we grow the MST as a cloud of vertices, starting from S
- We store with each vertex v a label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
- We add to the cloud the vertex u outside the cloud with the smallest distance label
- We update the labels of the vertices adjacent to u

PRIM-JARNIK'S ALGORITHM

- An adaptable priority queue stores the vertices outside the cloud
- Key: distance, $D[v]$
- Element: vertex v
- Q.replace (i, k) changes the key of an item
- We store three labels with each vertex v :
- Distance $D[v]$
- Parent edge in MST $P[v]$
- Locator in priority queve

```
Algorithm PrimJarnikMST(G)
Input: A weighted connected graph G
Output: A minimum spanning tree T of G
1. Pick any vertex s of G
2. }D[s]\leftarrow0;P[s]\leftarrow
3. for each vertex v\not=s do
4. }D[v]\leftarrow\infty;P[v]\leftarrow
5. }T\leftarrow
6. Priority queue Q of vertices with
    D[v] as the key
7. while \negQ.isEmpty() do
8. u\leftarrowQ.removeMin()
9. Add vertex }u\mathrm{ and edge }P[u] to 
10. for each e\inu.outgoingEdges() do
11.v}v\leftarrowG.opposite(u,e
12. if e.weight()<D[v]
13. }D[v]\leftarrowe.weight()
14. Q.replace(v,D[v])
15. return T
```

EXAMPLE

EXAMPLE

EXERCISE PRIM'S MST ALGORITHM

- Show how Prim's MST algorithm works on the following graph, assuming you start with SFO
- Show how the MST evolves in each iteration (a separate figure for each iteration).

ANALYSIS

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance, parent and locator labels of vertex $z O(\operatorname{deg}(z))$ times
- Setting/getting a label takes $O(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
- The key of a vertex w in the priority queue is modified at most $\operatorname{deg}(w)$ times, where each key change takes $O(\log n)$ time
- Prim-Jarnik's algorithm runs in $O((n+m) \log n)$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(v)=2 m$
- If the graph is connected the running time is $O(m \log n)$

KRUSKAL'S ALGORITHM

- Maintain a partition of the vertices into clusters
- Initially, single-vertex clusters
- Keep an MST for each cluster
- Merge "closest" clusters and their MSTs
- A priority queue stores the edges outside clusters
- Key: weight
- Element: edge
- At the end of the algorithm
- One cluster and one MST

Algorithm KruskalMST(G)

1. for each vertex $v \in G . v e r t i c e s()$ do
2. Define a cluster $C(v) \leftarrow\{v\}$
3. Initialize a priority queue Q of edges using the weights as keys
4. $T \leftarrow \emptyset$
5. while T has fewer than $n-1$ edges do
6. $(u, v) \leftarrow Q$.removeMin ()
7. if $C(u) \neq C(v)$ then
8. Add (u, v) to T
9. Merge $C(u)$ and $C(v)$
10.return T

EXAMPLE

EXAMPLE

EXERCISE KRUSKAL'S MST ALGORITHM

- Show how Kruskal's MST algorithm works on the following graph.
- Show how the MST evolves in each iteration (a separate figure for each iteration).

DATA STRUCTURE FOR KRUSKAL'S ALGORITHM

- The algorithm maintains a forest of trees
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations:
- find (u) : return the set storing u
- union (A, B) : replace the sets A and B with their union

LIST-BASED PARTITION

- Each set is stored in a List
- Each element has a reference back to the set
- Operation find (u) takes $O(1)$ time, and returns the set of which u is a member.
- In operation union (A, B), we move the elements of the smaller set to the sequence of the larger set and update their references
- The time for operation union (A, B) is $O(\min (|A|,|B|))$
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most $\log n$ times

ANALYSIS

- A partition-based version of Kruskal's Algorithm
- Cluster merges as unions
- Cluster locations as finds
- Complexity - $O((n+m) \log n)$ time
- At most m removals from the priority queue $-O(m \log n)$
- Each vertex can be merged at most $\log n$ times, as the clouds tend to "double" in size $O(n \log n)$

SHORTEST PATHS

SHORTEST PATH PROBLEM

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions

SHORTEST PATH PROBLEM

- If there is no path from v to u, we denote the distance between them by $d(v, u)=\infty$
- What if there is a negative-weight cycle in the graph?

SHORTEST PATH PROPERTIES

- Property 1:
- A subpath of a shortest path is itself a shortest path
- Property 2:
- There is a tree of shortest paths from a start vertex to all the other vertices
- Example:
- Tree of shortest paths from Providence

HNL

DIJKSTRA'S ALGORITHM

- The distance of a vertex v from a vertex S is the length of a shortest path between S and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex S (single-source shortest paths)
- Assumptions:
- The graph is connected
- The edges are undirected
- The edge weights are nonnegative
- Extremely similar to Prim-Jarnik's MST Algorithm
- We grow a "cloud" of vertices, beginning with S and eventually covering all the vertices
- We store with each vertex v a label $D[v]$ representing the distance of v from S in the subgraph consisting of the cloud and its adjacent vertices
- The label $D[v]$ is initialized to positive infinity
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, $D[v]$
- We update the labels of the vertices adjacent to u, in a process called edge relaxation

EDGE RELAXATION

- Consider an edge $e=(u, z)$ such that
- u is the vertex most recently added to the cloud
- Z is not in the cloud

- The relaxation of edge e updates distance $D[z]$ as follows:
- $D[z] \leftarrow \min (D[z], D[u]+e$.weight ()$)$

1. Pull in one of the vertices with red labels
2. The relaxation of edges updates the labels of LARGER

EXAMPLE
font size

EXAMPLE

©
\triangleq

EXERCISE DIJKSTRA'S ALGORITHM

- Show how Dijkstra's algorithm works on the following graph, assuming you start with SFO, i.e., $s=$ SFO.
- Show how the labels are updated in each iteration (a separate figure for each iteration).

DIJKSTRA'S ALGORITHM

- An adaptable priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- We store with each vertex:
- distance $D[v]$ label
- locator in priority queue

```
```

Algorithm Dijkstras sssp(G,s)

```
```

Algorithm Dijkstras sssp(G,s)
Input: A simple undirected weighted graph G with
Input: A simple undirected weighted graph G with
nonnegative edge weights and a source vertex s
nonnegative edge weights and a source vertex s
Output: A label D[v] for each vertex v of G,
Output: A label D[v] for each vertex v of G,
such that D[u] is the length of the
such that D[u] is the length of the
shorted path from s to v
shorted path from s to v

1. }D[s]\leftarrow0;D[v]\leftarrow\infty for each vertex v\not=
2. }D[s]\leftarrow0;D[v]\leftarrow\infty for each vertex v\not=
3. Let priority queue Q contain all the vertices of G
4. Let priority queue Q contain all the vertices of G
using D[v] as the key
using D[v] as the key
5. while \negQ.isEmpty() do //O(n) iterations
6. while \negQ.isEmpty() do //O(n) iterations
7. //pull a new vertex u in the cloud
8. //pull a new vertex u in the cloud
5.u}u\leftarrowQ.removeMin() / /O(logn
5.u}u\leftarrowQ.removeMin() / /O(logn
9. for each edge e\inG.outgoingEdges(u) do //O(\operatorname{deg}(u))
10. for each edge e\inG.outgoingEdges(u) do //O(\operatorname{deg}(u))
iterations
iterations
11. //relax edge e
12. //relax edge e
13. v\leftarrowG.opposite(u,e)
14. v\leftarrowG.opposite(u,e)
15. if D[u]+e.weight()<D[v] then
16. if D[u]+e.weight()<D[v] then
17. }D[v]\leftarrowD[u]+e.weight(
18. }D[v]\leftarrowD[u]+e.weight(
19. Q.replace(v,D[v]) / /O(logn)
```
```

11. Q.replace(v,D[v]) / /O(logn)
```
```


ANALYSIS

- Graph operations
- We find incident edges once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $z O(\operatorname{deg}(z))$ times
- Setting/getting a label takes $O(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
- The key of a vertex in the priority queve is modified at most $\operatorname{deg}(w)$ times, where each key change takes $O(\log n)$ time
- Dijkstra's algorithm runs in $O((n+m) \log n)$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg} v=2 m$
- The running time can also be expressed as $O(m \log n)$ if the graph is connected

WHY DIJKSTRA'S ALGORITHM WORKS

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- Proof by contradiction
- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D, F) was relaxed at that time!
- Thus, so long as $D[F] \geq D[D], F$'s distance cannot be wrong. That is, there is no wrong vertex.

WHY IT DOESN'T WORK FOR NEGATIVE-WEIGHT EDGES

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

BELLMAN-FORD ALGORITHM

- Works even with negative-weight edges
- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O (nm)
- Can be extended to detect a negativeweight cycle if it exists
- How?

Algorithm BellmanFord (G, s)

1. Initialize $D[s] \leftarrow 0$ and
$D[v] \leftarrow \infty$ for all vertices $v \neq s$
2. for $i \leftarrow 1 \ldots n-1$ do
3. for each $e \in G . e d g e s()$ do
4. //relax edge e
5. $u \leftarrow$ G.origin(e)
6. $z \leftarrow G$.opposite (u, e)
7. if $D[u]+e . w e i g h t()<D[z]$ then
8. $D[z] \leftarrow D[u]+$ e.weight ()

- Nodes are labeled with their $D[v]$ values

BELLMAN-FORD EXAMPLE

EXERCISE BELLMAN-FORD'S ALGORITHM

- Show how Bellman-Ford's algorithm works on the following graph, assuming you start with the top node
- Show how the labels are updated in each iteration (a separate figure for each iteration).

