
CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

ORD

DFW

SFO

LAX

DEPTH-FIRST SEARCH
DB

A

C

E

DEPTH-FIRST SEARCH

• Depth-first search (DFS) is a general

technique for traversing a graph

• A DFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• DFS on a graph with 𝑛 vertices and 𝑚
edges takes 𝑂(𝑛 +𝑚) time

• DFS can be further extended to solve

other graph problems

• Find and report a path between two

given vertices

• Find a cycle in the graph

• Depth-first search is to graphs as what

Euler tour is to binary trees

DFS ALGORITHM FROM A VERTEX

Algorithm DFS(𝐺, 𝑢)

Input: A graph 𝐺 and a vertex 𝑢 of 𝐺

Output: A collection of vertices reachable from 𝑢,

with their discovery edges

1. Mark 𝑢 as visited

2. for each edge 𝑒 = 𝑢, 𝑣 ∈ 𝐺.outgoingEdges(𝑢) do

3. if 𝑣 has not been visited then

4. Record 𝑒 as a discovery edge for 𝑣

5. DFS(𝐺, 𝑣)

EXAMPLE

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

𝐼(𝐴) = {𝑩, 𝐶, 𝐷, 𝐸}

𝐼(𝐵) = {𝑨, 𝐶, 𝐹}
𝐼(𝐵) = {𝐴, 𝑪, 𝐹}

𝐼(𝐶) = {𝑨, 𝐵, 𝐷, 𝐸}

DB

A

C

E

F G

DB

A

C

E

F G

DB

A

C

E

F G

𝐼(𝐶) = {𝐴, 𝑩, 𝐷, 𝐸}
𝐼(𝐶) = {𝐴, 𝐵, 𝑫, 𝐸}

EXAMPLE

𝐼(𝐷) = {𝑨, 𝐶} 𝐼(𝐸) = {𝑨, 𝐶}

𝐼(𝐶) = {𝐴, 𝐵, 𝐷, 𝑬}𝐼(𝐶) = {𝐴, 𝐵,𝑫, 𝐸}

𝐼(𝐷) = {𝐴, 𝑪}
𝐼(𝐷) = {𝐴, 𝐶}

𝐼(𝐸) = {𝐴, 𝑪}
𝐼(𝐸) = {𝐴, 𝐶}

DB

A

C

E

F G

DB

A

C

E

F G

DB

A

C

E

F G

DB

A

C

E

F G

EXAMPLE
𝐼(𝐶) = {𝐴, 𝐵, 𝐷, 𝐸}
𝐼(𝐵) = {𝐴, 𝐶, 𝑭}

DB

A

C

E

F G

DB

A

C

E

F G

𝐼(𝐺) = ∅

𝐼(𝐹) = {𝐵}

𝐼(𝐵) = {𝐴, 𝐶, 𝐹}
𝐼(𝐴) = {𝐴, 𝐵, 𝐶, 𝐷}

DB

A

C

E

F G

EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited

• Label edges as discovery or back edges

CB

A

E

D

F

DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic

strategy for exploring a maze

• We mark each intersection, corner and

dead end (vertex) visited

• We mark each corridor (edge) traversed

• We keep track of the path back to the

entrance (start vertex) by means of a

rope (recursion stack)

DFS ALGORITHM

• The algorithm uses a mechanism for setting and

getting “labels” of vertices and edges

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺
as discovery edges and back edges

1. for each 𝑣 ∈ 𝐺.vertices do

2. setLabel 𝑣, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺.edges do

4. setLabel(𝑒, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺.vertices do

6. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vertex 𝑣
Output: Labeling of the edges of 𝐺 in

the connected component of 𝑣 as

discovery edges and back edges

1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

3. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
5. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

6. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. setLabel(𝑒, 𝐵𝐴𝐶𝐾)

PROPERTIES OF DFS

• Property 1

• DFS(𝐺, 𝑣) visits all the vertices and

edges in the connected component of 𝑣

• Property 2

• The discovery edges labeled by

DFS(𝐺, 𝑣) form a spanning tree of the

connected component of 𝑣

DB

A

C

E

F G

v1

v2

ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes 𝑂(1) time

• Each vertex is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝑉𝐼𝑆𝐼𝑇𝐸𝐷

• Each edge is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 or 𝐵𝐴𝐶𝐾

• Function DFS(𝐺, 𝑣) and the method outgoingEdges are called once for each vertex

• DFS runs in 𝑂(𝑛 +𝑚) time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

DB

A

C

E

F G

APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path

between two given vertices 𝑢 and 𝑧 using the template

method pattern

• We call DFS(𝐺, 𝑢) with 𝑢 as the start vertex

• We use a stack 𝑆 to keep track of the path between the

start vertex and the current vertex

• As soon as destination vertex 𝑧 is encountered, we return

the path as the contents of the stack

Algorithm pathDFS(𝐺, 𝑣, 𝑧)
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. if 𝑣 = 𝑧
4. return 𝑆.elements()
5. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

6. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷) then

7. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
8. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

9. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
10. 𝑆.push(𝑒)
11. pathDFS 𝐺,𝑤
12. 𝑆.pop()
13. else

14. setLabel(𝑒, 𝐵𝐴𝐶𝐾)
15. 𝑆.pop()

APPLICATION
CYCLE FINDING

• We can specialize the DFS algorithm to find a simple cycle

using the template method pattern

• We use a stack 𝑆 to keep track of the path between the

start vertex and the current vertex

• As soon as a back edge 𝑣, 𝑤 is encountered, we return

the cycle as the portion of the stack from the top to vertex

𝑤

Algorithm cycleDFS(𝐺, 𝑣)
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆.push(𝑣)
3. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

4. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷) then

5. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
6. 𝑆.push 𝑒
7. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

8. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
9. cycleDFS 𝐺,𝑤
10. 𝑆.pop()
11. else

12. 𝑇 ← empty stack

13. repeat

14. 𝑇.push(S.pop())
15. until 𝑇.top = 𝑤
16. return 𝑇.elements
17. 𝑆.pop()

DIRECTED DFS

• We can specialize the traversal algorithms (DFS

and BFS) to digraphs by traversing edges only

along their direction

• In the directed DFS algorithm, we have four types

of edges

• discovery edges

• back edges

• forward edges

• cross edges

• A directed DFS starting at a vertex 𝑠 determines

the vertices reachable from 𝑠 A

C

E

B

D

REACHABILITY

• DFS tree rooted at 𝑣: vertices reachable from 𝑣 via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

STRONG CONNECTIVITY

• Each vertex can reach all other vertices

a

d

c

b

e

f

g

STRONG CONNECTIVITY ALGORITHM

• Pick a vertex 𝑣 in 𝐺

• Perform a DFS from 𝑣 in 𝐺

• If there’s a 𝑤 not visited, print “no”

• Let 𝐺’ be 𝐺 with edges reversed

• Perform a DFS from 𝑣 in 𝐺’

• If there’s a 𝑤 not visited, print “no”

• Else, print “yes”

• Running time: 𝑂(𝑛 +𝑚)

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the

subgraph

• Can also be done in 𝑂(𝑛 +𝑚) time using DFS, but is more complicated

(similar to biconnectivity).

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

BREADTH-FIRST SEARCH CB

A

E

D

L0

L1

F
L2

BREADTH-FIRST SEARCH

• Breadth-first search (BFS) is a general

technique for traversing a graph

• A BFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• BFS on a graph with n vertices and m

edges takes 𝑂(𝑛 +𝑚) time

• BFS can be further extended to solve

other graph problems

• Find and report a path with the minimum

number of edges between two given

vertices

• Find a simple cycle, if there is one

BFS ALGORITHM

• The algorithm uses a mechanism for setting and getting “labels”
of vertices and edges

Algorithm BFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges and

partition of the vertices of 𝐺
1. for each 𝑣 ∈ 𝐺.vertices do

2. setLabel(𝑣, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
3. for each 𝑒 ∈ 𝐺.edges() do

4. setLabel(𝑒, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺.vertices() do

6. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)
1. 𝐿0 ← 𝑠
2. setLabel(𝑠, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
3. 𝑖 ← 0
4. while ¬𝐿𝑖 .isEmpty() do

5. 𝐿𝑖+1 ← ∅
6. for each 𝑣 ∈ 𝐿𝑖 do

7. for each 𝑒 ∈ 𝐺.outgoingEdges(𝑣) do

8. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

9. 𝑤 ← 𝐺.opposite 𝑣, 𝑒
10. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

11. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
12. setLabel(𝑤, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤
14. else

15. setLabel(𝑒, 𝐶𝑅𝑂𝑆𝑆)
16. 𝑖 ← 𝑖 + 1

EXAMPLE

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

EXAMPLE

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

EXAMPLE

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited and note the level they are in

• Label edges as discovery or cross edges

CB

A

E

D

F

PROPERTIES

• Notation

• 𝐺𝑠: connected component of 𝑠

• Property 1

• BFS(𝐺, 𝑠) visits all the vertices and edges of 𝐺𝑠

• Property 2

• The discovery edges labeled by BFS 𝐺, 𝑠 form a

spanning tree 𝑇𝑠 of 𝐺𝑠

• Property 3

• For each vertex 𝑣 ∈ 𝐿𝑖

• The path of 𝑇𝑠 from 𝑠 to 𝑣 has 𝑖 edges

• Every path from 𝑠 to 𝑣 in 𝐺𝑠 has at least 𝑖 edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

ANALYSIS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence 𝐿𝑖

• Method outgoingEdges() is called once for each vertex

• BFS runs in 𝑂 𝑛 +𝑚 time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a

graph 𝐺 to solve the following problems in 𝑂 𝑛 +𝑚 time

• Compute the connected components of 𝐺

• Compute a spanning forest of 𝐺

• Find a simple cycle in 𝐺, or report that 𝐺 is a forest

• Given two vertices of 𝐺, find a path in 𝐺 between them with the minimum number of

edges, or report that no such path exists

DFS VS. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest,
connected components, paths, cycles

Shortest paths

Biconnected components

DFS VS. BFS

Back edge 𝑣,𝑤

• 𝑤 is an ancestor of 𝑣 in the tree of

discovery edges

Cross edge 𝑣,𝑤
• 𝑤 is in the same level as 𝑣 or in the

next level in the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

TOPOLOGICAL ORDERING

JFK

BOS

MIA

ORD

LAX
DFW

SFO

DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph

that has no directed cycles

• A topological ordering of a digraph is a

numbering

• 𝑣1, … , 𝑣𝑛

• Of the vertices such that for every edge 𝑣𝑖 , 𝑣𝑗 ,

we have 𝑖 < 𝑗

• Example: in a task scheduling digraph, a

topological ordering a task sequence that

satisfies the precedence constraints

• Theorem - A digraph admits a topological

ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

APPLICATION

• Scheduling: edge (𝑎, 𝑏) means task 𝑎 must be completed before 𝑏 can be

started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

more c.s.

write c.s. program

dream about graphs

play

wake up

eat

nap

study computer sci.

work out

sleep

A typical student day

bake cookies

EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

more c.s.

write c.s. program

bake cookies

dream about graphs

play

wake up

eat

nap

study computer sci.

work out

sleep

A typical student day1

2 3

4 5

6

7

8

9

10

11

ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort 𝐺
1. 𝐻 ← 𝐺
2. 𝑛 ← 𝐺.numVertices
3. while ¬𝐻.isEmpty do

4. Let 𝑣 be a vertex with no outgoing edges

5. Label 𝑣 ← 𝑛
6. 𝑛 ← 𝑛 − 1
7. 𝐻.removeVertex 𝑣

IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search

• 𝑂(𝑛 + 𝑚) time.

Algorithm topologicalDFS 𝐺
Input: DAG 𝐺
Output: Topological ordering of 𝑔
1. 𝑛 ← 𝐺.numVertices
2. Initialize all vertices as

𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each vertex 𝑣 ∈ 𝐺.vertices do

4. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. topologicalDFS 𝐺, 𝑣

Algorithm topologicalDFS 𝐺, 𝑣
Input: DAG 𝐺, start vertex 𝑣
Output: Labeling of the vertices of 𝐺

in the connected component of 𝑣
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

3. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
4. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. //𝑒 is a discovery edge

6. topologicalDFS 𝐺,𝑤
7. else

8. //𝑒 is a forward, cross, or back

edge

9. Label 𝑣 with topological number 𝑛
10. 𝑛 ← 𝑛 − 1

TOPOLOGICAL SORTING EXAMPLE

TOPOLOGICAL SORTING EXAMPLE

9

TOPOLOGICAL SORTING EXAMPLE

8

9

TOPOLOGICAL SORTING EXAMPLE

7

8

9

TOPOLOGICAL SORTING EXAMPLE

7

8

6

9

TOPOLOGICAL SORTING EXAMPLE

7

8

56

9

TOPOLOGICAL SORTING EXAMPLE

7

4

8

56

9

TOPOLOGICAL SORTING EXAMPLE

7

4

8

56

3

9

TOPOLOGICAL SORTING EXAMPLE

2

7

4

8

56

3

9

TOPOLOGICAL SORTING EXAMPLE

2

7

4

8

56

1

3

9

