%
CHAPTER 14 @j

GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND
GOLDWASSER (WILEY 2016)

1§ DEPTH-FIRST SEARCH

/
O o o .
is a general ® DFS on a graph with n vertices and m
technique for traversing a graph edges takes
* A DFS traversal of a graph G ® DFS can be further extended to solve
* Visits all the vertices and edges of G other graph problems
® Determines whether G is connected ® Find and report a path between two

®* Computes the connected components of G given vertices

* Computes a spanning forest of G * Find a cycle in the graph

;) ® Depth-first search is to graphs as what
O Euler tour is to binary trees

1§ DFS ALGORITHM FROM A VERTEX f

° Algorithm DFS (G, u)

Input: A graph G and a vertex u of G

Output: A collection of vertices reachable from u,
J) with their discovery edges

Mark u as visited
T 5 for each edge e = (u,v) € G.outgoingEdges (u) do

if v has not been visited then

Record e as a discovery edge for v
DFS (G, v)

g s> W IN -

I(B) = {A,C,F)
\] EXAMPLE it
1 ‘ unexplored vertex

‘ visited vertex

— unexplored edge
— discovery edge ‘

l - —=» back edge ﬂ
I(A) = {B,C,D,E} I(C) = {A,B,D,E)}

O

I(C) = {A,B,D,E}
/O I(C) = {A,B,D,E}

\ EXAMPLE (
1 I(C) — {AB,D,E}

) I(C) = {A,B,D,E}
¢ T> : .*
|

Cf I(D) = {4,C) ® I(E) = {4,C)
O

: @ 6
© © ©

I(D) = {4,C} I(E) = {4,C}
I(D) = {A,C} I(E) = {4,C}

2}\) EXAMPLE

® ©

1(C) = {A,B,D,E} g

I(B) = {A,C,F) ® .

@ @ ®@ © 6

T

@ ©®

I(B) = {A,C,F)
I(A) = {A,B,C,D}

K EXERCISE
1 DFS ALGORITHM

O

® Perform DFS of the following graph, start from vertex A

®* Assume adjacent edges are processed in alphabetical order

®* Number vertices in the order they are visited

l ®* Label edges as discovery or back edges

[o .

O

]
[

N
\

DFS AND MAZE TRAVERSAL

®* The DFS algorithm is similar to a classic

strategy for exploring a maze

®* We mark each intersection, corner and

dead end (vertex) visited
®* We mark each corridor (edge) traversed

®* We keep track of the path back to the
entrance (start vertex) by means of a

rope (recursion stack)

O

K\)
1\0 DFS ALGORITHM

® The algorithm uses a mechanism for setting and
getting “labels” of vertices and edges

Algorithm DFS(G)

Input: Graph G

Output: Labeling of the edges of G
as discovery edges and back edges

1. for each v EG.vertices() do

2. setLabel(v,)

3. for each e € G.edges() do

4. setLabel(e, UNEXPLORED)

5. for each v € (G.vertices() do

0. if getLabel(v) =

7. DFS(G, V)

then

Algorithm DFS(G,v)

Input: Graph G and a start vertex v
Output: Labeling of the edges of G in
the connected component of v as
discovery edges and back edges

. setLabel(y,)
for each e € G.outgoingEdges(v) do
if getLabel(e) = UNEXPLORED)
w « G.opposite(v,e)
if getLabel(w) =
setLabel(e,)
DFS(G,w)
else
setLabel(e,)

then

OO~JOUIdDdWN

* K\) 7
1\) PROPERTIES OF DFS (

O

® Property 1 V4
* DFS(G, v) visits all the vertices and @

edges in the connected component of v

e ® ®

®* The discovery edges labeled by

Cf DFS(G, v) form a spanning tree of the @ @
P connected component of v @VZ

/5

ANALYSIS OF DFS

Setting /getting a vertex/edge label takes O(1) time

Each vertex is labeled twice

¢ once as @
R) @ ©

®* Each edge is labeled twice
* once as UNEXPLORED ® © @

® once as or
* Function DFS(G, v) and the method outgoingEdges() are called once for each vertex

® DFS runs in provided the graph is represented by the adjacency list structure

* Recall that £, deg(v) = 2m

\

/5

APPLICATION
PATH FINDING

®* We can specialize the DFS algorithm to find a path
between two given vertices U and Z using the template
method pattern

* We call DFS(G, u) with u as the start vertex

®* We use a stack S to keep track of the path between the
start vertex and the current vertex

As soon as destination vertex Z is encountered, we return
the path as the contents of the stack

Algorithm pathDFS(G,v,Zz)
1. setLabel(v,VISITED)

5. for each e € G.outgoingEdges(v) do

6. if getLabel(e) = UNEXPLORED) then
7. W « G.opposite(v,e)

8. if getlLabel(w) = UNEXPLORED then
9. setLabel(e, DISCOVERY)

11. pathDFS(G,w)

13. else

14. setLabel(e, BACK)

\

APPLICATION
CYCLE FINDING

®* We can specialize the DFS algorithm to find a simple cycle
using the template method pattern

®* We use a stack S to keep track of the path between the
start vertex and the current vertex

* Assoon as a back edge (v, w) is encountered, we return
the cycle as the portion of the stack from the top to vertex
w

Algorithm cycleDFS(G,v)
1. setLabel(v,VISITED)

3. for each e € G.outgoingEdges(v) do

4, if getLabel(e) = UNEXPLORED) then
5. w « G.opposite(v,e)

7. if getlLabel(w) = UNEXPLORED then
8. setLabel(e, DISCOVERY)

9. cycleDFS(G,w)

11. else

1\0 DIRECTED DFS

®* We can specialize the traversal algorithms (DFS
and BFS) to digraphs by traversing edges only
along their direction

® In the directed DFS algorithm, we have four types

of edges
® discovery edges

® cross edges

P ® A directed DFS starting at a vertex S determines

the vertices reachable from s

\1}\)
1\) REACHABILITY

O

®* DFS tree rooted at v: vertices reachable from v via directed paths

1§ STRONG CONNECTIVITY
O

® Each vertex can reach all other vertices

v

Pick a vertex v in G

Perform a DFS from v in G

* If there’s a W not visited, print “no”

Let G’ be G with edges reversed

O_/

Perform a DFS from v in G’

® |If there’s a W not visited, print “no”

T f) ® Else, print “yes”
O

Running time: O(n + m)

1\.\5 STRONGLY CONNECTED COMPONENTS W

O
®* Maximal subgraphs such that each vertex can reach all other vertices in the
subgraph
l ® Can also be done in O(n + m) time using DFS, but is more complicated

(similar to biconnectivity). (K
d
T @—® {a.c.o)
O

O
M {f,d,e,b}

LN
)

LO
| BREADTH-FIRST SEARCH . *
O =

",

1§ BREADTH-FIRST SEARCH

/
O
is a general ® BFS on a graph with n vertices and m
technique for traversing a graph edges takes
* A BFS traversal of a graph G ® BFS can be further extended to solve
® Visits all the vertices and edges of G other graph problems
®* Determines whether G is connected ®* Find and report a path with the minimum
T * Computes the connected components of G number of edges between two given
p ®* Computes a spanning forest of G Vs

®* Find a simple cycle, if there is one

BFS ALGORITHM

Algorithm BFS(G,s)

Ly « {s}
* The algorithm uses a mechanism for setting and getting “labels” 2 setLabel(s,)
of vertices and edges 3 i<0
4. while —L;.isEmpty() do
Algorithm BFS(G) 5 Liii— 0
Input: Graph G ‘ : it
Output: Labeling of the edges and for each v E€ Li do
partition of the vertices of G] for each e € G.outgoingEdges(v) do
1. for each v € Gvertices() do 8 if getLabel(e) = UNEXPLORED then
2 setLabel(v,) 9 w « G.opposite(v,e)
3. for each e € G.edges() do 10 £ 1 A h
4. setLabel(e, UNEXPLORED) . if getlLabel(w) = e
5. for each v € G.vertices() do L1 setLabel(e,)
6 if getlLabel(v) = then 12. setLabel(w,)
/ =, v) 13. Liy; < Liyq U{w}
14. else
15. setLabel(e,)

lo. i<i+1

1N
e

LE

‘ unexplored vertex
‘ visited vertex
— unexplored edge
— discovery edge

- — —» cross edge / ﬂ
])

O

O

\\O
1\] EXAMPLE

L

L,

‘ unexplored vertex
visited vertex

unexplored edge
=P discovery edge
== =§ cross edge

s

O

\\O
1\] EXAMPLE

‘ unexplored vertex
visited vertex

unexplored edge
=P discovery edge

== =§ cross edge

s

K EXERCISE
1 BFS ALGORITHM

/)
O
® Perform BFS of the following graph, start from vertex A
®* Assume adjacent edges are processed in alphabetical order
® Number vertices in the order they are visited and note the level they are in
l ®* Label edges as discovery or cross edges

[o .

K\O
1\] PROPERTIES

/
O :
* Notation
* (,: connected component of s
® Property 1
l * BFS(G, s) visits all the vertices and edges of G
® Property 2
O * The discovery edges labeled by BFS(G, s) form a
spanning tree T of G
®* Property 3

® For each vertex v € L;

® The path of T from s to ¥ has i edges

/O * Every path from s to v in G5 has at least i edges

* K\ /
1\) ANALYSIS f

/
O : : :
* Setting/getting a vertex/edge label takes O(1) time
® Each vertex is labeled twice
® once as
® once as
l ® Each edge is labeled twice
* once as UNEXPLORED
C‘) ® once as or
p ® Each vertex is inserted once into a sequence L;

Method outgoingEdges() is called once for each vertex

BFS runs in provided the graph is represented by the adjacency list structure
* Recall that £, deg(v) = 2m

1\) APPLICATIONS

/
O
® Using the template method pattern, we can specialize the BFS traversal of a
graph G to solve the following problems in O(n + m) time
®* Compute the connected components of G
l * Compute a spanning forest of G
® Find a simple cycle in G, or report that G is a forest
T * Given two vertices of G, find a path in G between them with the minimum number of
p edges, or report that no such path exists

Q\)
1\0 DFS VSS. BFS

/ Applications DFS | BFS
O Spanning forest, J J
connected components, paths, cycles
Shortest paths \
l Biconnected components \

= ~
o S L,
\
DFS

BFS

I

K\O
1\] DFS VS. BFS

O

Back edge (v, w) Cross edge (v, w)
® W is in the same level as v or in the

next level in the tree of discovery
discovery edges edges

® W is an ancestor of v in the tree of

\\

. S
\

DFS

/3 BFS

I\
o N/}
| TOPOLOGICAL ORDERING @)}

T . :\>MIA

O

0

1\\5 DAGS AND TOPOLOGICAL ORDERING
O—E

A is a digraph

that has no directed cycles

A topological ordering of a digraph is a

numbering

o vl, ---,vn

® Of the vertices such that for every edge (vi, vj),

we have [< j

Example: in a task scheduling digraph, a
topological ordering a task sequence that

satisfies the precedence constraints

Theorem - A digraph admits a topological

ordering if and only if it is a DAG

Topological
ordering of G

Q\O
1\] APPLICATION

O

® Scheduling: edge (a, b) means task a must be completed before b can be

=TT
@

started

",

Q EXERCISE
1 TOPOLOGICAL SORTING

O

A typical student day

o

* Number vertices, so that (u, v)

in £ impliesu < v

1,

Q EXERCISE
1 TOPOLOGICAL SORTING

O

* Number vertices, so that (u, v)

in £ impliesu < v

1§ ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort(G)

1. He<G

n « G.numVertices()

. while —H.isEmpty() do

Let v be a vertex with no outgolng edges
Label ven

nen-—1

H.removeVertex(v)

!
[o

QO\U‘IFBU.)!\)

\

IMPLEMENTATION WITH DFS

® Simulate the algorithm by using depth-first search

* O(n+m) time.

Algorithm topologicalDFS(G)

Input: DAG G

Output: Topological ordering of g
1. neGnumvertices()

2. Initialize all vertices as

3. for each vertex v € G.vertices() do
4, if getlLabel(v) = then
5. topologicalDFS(G,v)

Algorithm topologicalDFS(G,v)
Input: DAG G, start vertex v
Output: Labeling of the vertices of G
in the connected component of v
setLabel(v,)
for each ¢ € G.outgoingEdges(v) do
w < G.opposite(v,e)
if getLabel(w) = then

topologicalDFS(G,w)
else

OJouUuld WN -

9. Label v with topological number n
10. nn-1

1§ TOPOLOGICAL SORTING EXAMPLE
O

!

",

