CHAPTER 14 GRAPH ALGORITHMS

Q

0

0

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

 \bigcirc

 \bigcirc

DEPTH-FIRST SEARCH

 \langle

DEPTH-FIRST SEARCH

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs as what Euler tour is to binary trees

DFS ALGORITHM FROM A VERTEX

Algorithm DFS(G, u)

Input: A graph G and a vertex u of G
Output: A collection of vertices reachable from u,
 with their discovery edges

1. Mark u as visited

3.

4.

5.

- 2. for each edge $e = (u, v) \in G$.outgoingEdges(u) do
 - if v has not been visited then
 - Record e as a discovery edge for u
 - DFS(G, u)

EXERCISE DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A

- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited
- Label edges as discovery or back edges

O

 \bigcirc

 \bigcirc

Q

DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic strategy for exploring a maze

- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

DFS ALGORITHM

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS(G)

Q

Input: Graph G
Output: Labeling of the edges of G

as discovery edges and back edges

- **1.** for each $v \in G$.vertices() do
- 2. setLabel(v, UNEXPLORED)
- **3.** for each $e \in G.edges()$ do
- 4. setLabel(*e*, *UNEXPLORED*)
- 5. for each $v \in G$.vertices() do
- 6. if getLabel(v) = UNEXPLORED then
- 7. DFS(G, v)

Algorithm DFS(G, v)**Input:** Graph G and a start vertex v**Output:** Labeling of the edges of G in the connected component of v as discovery edges and back edges 1. setLabel(*v*,*VISITED*) **2.** for each $e \in G$.outgoingEdges(v) do 3. if getLabel(e) = UNEXPLORED) 4. $w \leftarrow G.$ opposite(v, e)5. if getLabel(w) = UNEXPLORED then 6. setLabel(e, DISCOVERY) 7. DFS(G, w)8. else

setLabel(e,BACK)

9.

PROPERTIES OF DFS

- Property 1
 - DFS(G, v) visits all the vertices and edges in the connected component of v
- Property 2
 - The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

 \mathbf{B}

 \bigcirc

 \bigcirc

 \bigcirc

6

ANALYSIS OF DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as **VISITED**

- Each edge is labeled twice
 - once as UNEXPLORED
 - once as *DISCOVERY* or *BACK*

- Function DFS(G, v) and the method outgoingEdges() are called once for each vertex
- DFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

APPLICATION PATH FINDING

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex *z* is encountered, we return the path as the contents of the stack

Algorithm pathDFS(G, v, z) setLabel(v,VISITED) if v = z**return** S.elements() **5.** for each $e \in G$.outgoingEdges(v) do **if** getLabel(*e*) = UNEXPLORED) **then** 6. 7. $w \leftarrow G.$ opposite(v, e)8. if getLabel(w) = UNEXPLORED then 9. setLabel(e, DISCOVERY) S.push(e) 11. pathDFS(G, w)12. S.pop() 13. else 14. setLabel(e,BACK) 15. S.pop()

 \bigcirc

()

APPLICATION CYCLE FINDING

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

Algorithm cycleDFS(G, v) setLabel(v,VISITED) **3.** for each $e \in G$.outgoingEdges(v) do 4. if getLabel(e) = UNEXPLORED) then 5. $w \leftarrow G.$ opposite(v, e)7. if getLabel(w) = UNEXPLORED then 8. setLabel(e, DISCOVERY) 9. cycleDFS(G,w) 11. else $T \leftarrow \text{empty stack}$ repeat 15. **until** T.top() = w 16. **return** *T*.elements()

 \bigcirc

 \bigcirc

DIRECTED DFS

 \bigcirc

 \bigcirc

O

6

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

• DFS tree rooted at v: vertices reachable from v via directed paths

 \mathcal{O}

 \bigcirc

O

9

 \bigcirc

()

REACHABILITY

STRONG CONNECTIVITY

Q

 \bigcirc

O

 \mathcal{O}

9

 \bigcirc

 \bigcirc

 \bigcirc

• Each vertex can reach all other vertices

STRONG CONNECTIVITY ALGORITHM

• Pick a vertex v in G

 \bigcirc

6

- Perform a DFS from v in G
 - If there's a *w* not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a *w* not visited, print "no"
 - Else, print "yes"
- Running time: O(n+m)

STRONGLY CONNECTED COMPONENTS

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n + m) time using DFS, but is more complicated (similar to biconnectivity).

 \bigcirc

 \bigcirc

BREADTH-FIRST SEARCH

 \mathbf{O}

کر

BREADTH-FIRST SEARCH

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G

- BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS ALGORITHM

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Q

Input: Graph G
Output: Labeling of the edges and
 partition of the vertices of G
1. for each v ∈ G.vertices() do
2. setLabel(v,UNEXPLORED)
3. for each e ∈ G.edges() do
4. setLabel(e,UNEXPLORED)
5. for each v ∈ G.vertices() do
6. if getLabel(v) = UNEXPLORED then
7. BFS(G,v)

Algorithm BFS(G,s) <u>1.</u> $L_0 \leftarrow \{s\}$ 2. setLabel(s, VISITED) $3. i \leftarrow 0$ **4.** while $\neg L_i$.isEmpty() do 5. $L_{i+1} \leftarrow \emptyset$ 6. for each $v \in L_i$ do 7. for each $e \in G$.outgoingEdges(v) do 8. **if** getLabel(*e*) = UNEXPLORED **then** 9. $w \leftarrow G.$ opposite(v, e)10. if getLabel(w) = UNEXPLORED then 11. setLabel(e, DISCOVERY) 12. setLabel(w,VISITED) 13. $L_{i+1} \leftarrow L_{i+1} \cup \{w\}$ 14. else 15. setLabel(e, CROSS) 16. $i \leftarrow i + 1$

Q EXAMPLE L_0 (A unexplored vertex A L_1 A visited vertex C B unexplored edge discovery edge Ε F cross edge L_0 L_0 A (A) \boldsymbol{L}_1 L_1 B C B D Ε F Е F

(D)

D

 \bigcirc

 \bigcirc

 \mathcal{O}

6

 \bigcirc

EXERCISE BFS ALGORITHM

 \bigcirc

Q

 \bigcirc

• Perform BFS of the following graph, start from vertex A

- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited and note the level they are in
- Label edges as discovery or cross edges

PROPERTIES

Notation

O

 \bigcirc

 \mathcal{O}

6

- G_s : connected component of s
- Property 1
 - BFS(G, s) visits all the vertices and edges of G_s
- Property 2
 - The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s
- Property 3
 - For each vertex $v \in L_i$
 - The path of T_s from s to v has i edges
 - Every path from s to v in G_s has at least i edges

ANALYSIS

Q

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method outgoingEdges() is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

APPLICATIONS

Q

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS VS. BFS

6

 \bigcirc

O

0

6

 \circ

 \bigcirc

 \bigcirc

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	\checkmark	\checkmark
Shortest paths		\checkmark
Biconnected components	\checkmark	

 \circ

DFS VS. BFS

D

 \bigcirc

O

9

 \bigcirc

Back edge (v, w)

• w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

 w is in the same level as v or in the next level in the tree of discovery edges

 \bigcirc

TOPOLOGICAL ORDERING

DAGS AND TOPOLOGICAL ORDERING

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering
 - $v_1, ..., v_n$

- Of the vertices such that for every edge (v_i, v_j) , we have i < j
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
- Theorem A digraph admits a topological ordering if and only if it is a DAG

APPLICATION

 \mathcal{O}

 \bigcirc

O

6

6

 \bigcirc

• Scheduling: edge (a, b) means task a must be completed before b can be

EXERCISE TOPOLOGICAL SORTING

• Number vertices, so that (u, v)in E implies u < v

 \mathcal{O}

 \bigcirc

 \bigcirc

 \mathcal{O}

6

EXERCISE TOPOLOGICAL SORTING

• Number vertices, so that (u, v)in E implies u < v

 \mathcal{O}

 \bigcirc

 \bigcirc

 \mathcal{O}

6

ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort(G) 1. $H \leftarrow G$ 2. $n \leftarrow G$.numVertices() 3. while $\neg H$.isEmpty() do 4. Let v be a vertex with no outgoing edges 5. Label $v \leftarrow n$ 6. $n \leftarrow n-1$

7. H.removeVertex(v)

IMPLEMENTATION WITH DFS

- Simulate the algorithm by using depth-first search •
- O(n+m) time.

Algorithm topologicalDFS(G)

Input: DAG G

- **Output:** Topological ordering of g
- 1. $n \leftarrow G.$ numVertices()
- 2. Initialize all vertices as UNEXPLORED
- 3. **for** each vertex $v \in G$.vertices() **do**
- if getLabel(v) = UNEXPLORED then 4. 5.
 - topologicalDFS(G, v)

Algorithm topologicalDFS(G,v)		
Input: DAG G , start vertex v		
Output: Labeling of the vertices of G		
in the connected component of $ u$		
1. setLabel(v,VISITED)		
2. for each $e \in G$.outgoingEdges (v) do		
3. $w \leftarrow G$.opposite (v, e)		
4. if getLabel(w) = UNEXPLORED then		
5. //e is a discovery edge		
6. topologicalDFS(G,w)		
7. else		
8. //e is a forward, cross, or back		
edge		
9. Label v with topological number n		
10. $n \leftarrow n-1$		

D

 \bigcirc

 \bigcirc

 \bigcirc

Q

