

GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

GRAPH

- A graph is a pair $G=(V, E)$, where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges can store arbitrary elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

APPLICATIONS

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases
- Entity-relationship diagram

TERMINOLOGY EDGE AND GRAPH TYPES

- Edge Types
- Directed edge
- ordered pair of vertices (u, v)
- first vertex u is the origin/source
- second vertex v is the destination/target
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u, v)
- e.g., a flight route
- Weighted edge
- Numeric label associated with edge
(u, v)

- Graph Types
- Directed graph (Digraph)
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network
- Weighted graph
- all the edges are weighted

TERMINOLOGY VERTICES AND EDGES

- End points (or end vertices) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel (multiple) edges
- h and i are parallel edges
- Self-loop
- j is a self-loop

Note: A graph with no parallel edges or self loops are said to be simple. Unless otherwise stated, you should assume all graphs discussed are simple

TERMINOLOGY VERTICES AND EDGES

- Outgoing edges of a vertex
- h and b are the outgoing edges of X
- Incoming edges of a vertex
- e, g, and i are incoming edges of X
- In-degree of a vertex
- X has in-degree 3
- Out-degree of a vertex
- X has out-degree 2

TERMINOLOGY PATHS

- Path
- Sequence of alternating vertices and edges
- Begins with a vertex
- Ends with a vertex
- Each edge is preceded and followed by its endpoints
- Simple path
- Path such that all its vertices and edges are distinct
- Examples
- $P_{1}=\{V, b, X, h, Z\}$ is a simple path
- $P_{2}=\{U, c, W, e, X, g, Y, f, W, d, V\}$ is a path that is not simple

TERMINOLOGY
 CYCLES

- Cycle
- Circular sequence of alternating vertices and edges
- Each edge is preceded and followed by its endpoints
- Simple cycle
- Cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=\{V, b, X, g, Y, f, W, c, U, a, V\}$ is a simple cycle
- $C_{2}=\{U, c, W, e, X, g, Y, f, W, d, V, a, U\}$ is a cycle that is not simple
- A digraph is called acyclic if it does not contain any cycles

EXERCISE ON TERMINOLOGY

1. Number of vertices?
2. Number of edges?
3. What type of the graph is it?
4. Show the end vertices of the edge with largest weight
5. Show the vertices of smallest degree and largest degree
6. Show the edges incident to the vertices in the above question
7. Identify the shortest simple path from HNL to PVD
8. Identify the simple cycle with the most edges

EXERCISE PROPERTIES OF UNDIRECTED GRAPHS

- Property 1 - Total degree
$\Sigma_{v} \operatorname{deg}(v)=$?
- Property 2 - Total number of edges
- In an undirected graph with no selfloops and no multiple edges
$m \leq$ Upper Bound?
Lower Bound? $\leq m$
- Notation
- n
- m
- $\operatorname{deg}(v)$
number of vertices
number of edges
degree of vertex v

Example

- $n=$?
- $m=$?
- $\operatorname{deg}(v)=$?

A graph with given number of vertices (4) and maximum number of edges

EXERCISE
 PROPERTIES OF UNDIRECTED GRAPHS

- Property 1 - Total degree

$$
\Sigma_{v} \operatorname{deg}(v)=2 m
$$

- Property 2 - Total number of edges
- In an undirected graph with no self-loops and no multiple edges

$$
\begin{aligned}
& m \leq \frac{n(n-1)}{2} \\
& 0 \leq m
\end{aligned}
$$

Proof: Each vertex can have degree at most $(n-1)$

A graph with given number of vertices (4) and maximum number of edges

EXERCISE
 PROPERTIES OF DIRECTED GRAPHS

- Property 1 - Total in-degree and outdegree

$$
\begin{aligned}
& \Sigma_{v} \text { in }-\operatorname{deg}(v)=? \\
& \Sigma_{v} \text { out }-\operatorname{deg}(v)=?
\end{aligned}
$$

- Notation
- n number of vertices
- m number of edges
- $\operatorname{deg}(v)$ degree of vertex v
- Property 2 - Total number of edges
- In an directed graph with no self-loops and no multiple edges $m \leq$ UpperBound?
LowerBound? $\leq m$

Example

- $n=$?
- $m=$?
- $\operatorname{deg}(v)=?$

A graph with given number of vertices (4) and maximum number of edges

EXERCISE
 PROPERTIES OF DIRECTED GRAPHS

- Property 1 - Total in-degree and outdegree

$$
\begin{aligned}
& \Sigma_{v} i n-\operatorname{deg}(v)=m \\
& \Sigma_{v} \text { out }-\operatorname{deg}(v)=m
\end{aligned}
$$

- Notation
- n number of vertices
- m number of edges
- $\operatorname{deg}(v)$ degree of vertex v
- Property 2 - Total number of edges
- In an directed graph with no self-loops and no multiple edges

$$
\begin{aligned}
& m \leq n(n-1) \\
& 0 \leq m
\end{aligned}
$$

Example

- $n=4$
- $m=12$
- $\operatorname{deg}(v)=6$

A graph with given number of vertices (4) and maximum number of edges

TERMINOLOGY CONNECTIVITY

- Given two vertices u and v, we say u reaches v, and that v is reachable from u, if there exists a path from u to v. In an undirected graph reachability is symmetric
- A graph is connected if there is a path between every pair of vertices
- A digraph is strongly connected if there every pair of vertices is reachable

Connected graph u and v are reachable

Connected digraph
u and v are not mutually reachable

TERMINOLOGY SUBGRAPHS

- A subgraph H of a graph G is a graph whose vertices and edges are subsets of G, respectively
- A spanning subgraph of G is a subgraph that contains all the vertices of G
- A connected component of a graph G is a maximal connected subgraph of G

Spanning subgraph

Non connected graph with two connected components

TERMINOLOGY TREES AND FORESTS

- A forest is a graph without cycles
- A (free) tree is connected forest
- This definition of tree is different from the one of a rooted tree
- The connected components of a forest are trees

Forest

SPANNING TREES AND FORESTS

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks

Graph

Spanning tree
numVertices(): Returns the number of vertices of the graph.
vertices(): Returns an iteration of all the vertices of the graph.
numEdges(): Returns the number of edges of the graph.
edges(): Returns an iteration of all the edges of the graph.

GRAPH ADT

- Vertices and edges are lightweight objects and store elements
- Although the ADT is specified from the graph object, we often have similar functions in the Vertex and Edge objects
getEdge (u, v) : Returns the edge from vertex u to vertex v, if one exists; otherwise return null. For an undirected graph, there is no difference between getEdge (u, v) and get $\operatorname{Edge}(v, u)$.
endVertices (e) : Returns an array containing the two endpoint vertices of edge e. If the graph is directed, the first vertex is the origin and the second is the destination.
opposite (v, e) : For edge e incident to vertex v, returns the other vertex of the edge; an error occurs if e is not incident to v.
outDegree (v) : Returns the number of outgoing edges from vertex v.
inDegree (v) : Returns the number of incoming edges to vertex v. For an undirected graph, this returns the same value as does outDegree (v).
outgoingEdges (v) : Returns an iteration of all outgoing edges from vertex v.
incomingEdges (v) : Returns an iteration of all incoming edges to vertex v. For an undirected graph, this returns the same collection as does outgoingEdges (v).
insertVertex (x) : Creates and returns a new Vertex storing element x.
insertEdge (u, v, x) : Creates and returns a new Edge from vertex u to vertex v, storing element x; an error occurs if there already exists an edge from u to v.
removeVertex (v) : Removes vertex v and all its incident edges from the graph. removeEdge(e): Removes edge e from the graph.

EXERCISE ON ADT

1. outgoingEdges(ord)
2. insertVertex(iah)
3. insertEdge(mia, pvd, 1200)
4. incomingEdges(ord)
5. outDegree(ord)
6. endVertices(\{lga,mia\})
7. opposite (dfw, $\{d f w, \lg a\}$)

EDGE LIST STRUCTURE

EXERCISE
EDGE LIST STRUCTURE

- Construct the edge list for the following graph

ASYMPTOTIC PERFORMANCE

EDGE LIST STRUCTURE

| - n vertices, m edges |
| :--- | :---: |
| - No parallel edges |
| - No self-loops |\quad Space \quad Edge List

ASYMPTOTIC PERFORMANCE

EDGE LIST STRUCTURE

- n vertices, m edges - No parallel edges - No self-loops	Edge List
Space	$O(n+m)$
getEdge (u, v), outDegree (v), outgoingEdges (v)	$O(m)$
insertVertex (x), insertEdge (u, v, w), removeEdge((e)	O (1)
removeVertex(v)	$O(m)$

ADJACENCY LIST STRUCTURE

Adjacency List
A-ORD-\{ORD, PVD\}-\{ORD, DFW\}

- LGA $\{L G A, P V D\}\{$ LGA, MIA $\}\{$ LGA, DFW $\}$
- PVD $\{$ \{PVD, ORD\} $\{\{$ PVD, LGA $\}$
- DFW-\{DFW, ORD $\}-\{D F W, L G A\}-\{D F W, M I A\}$
- MIA $\{$ MIA, LGA $\}\{$ MIA, DFW $\}$

- Adjacency Lists associate vertices with their edges (in addition to edge list!)
- Each vertex stores a list of incident edges
- List of references to incident edge objects
- Augmented edge object
- Stores references to associated positions in incident adjacency lists

EXERCISE
ADJACENCY LIST STRUCTURE

- Construct the adjacency list for the following graph

ASYMPTOTIC PERFORMANCE ADJACENCY LIST STRUCTURE

ASYMPTOTIC PERFORMANCE ADJACENCY LIST STRUCTURE

- n vertices, m edges - No parallel edges - No self-loops	Edge List	
Space	$O(n+m)$	
getEdge(u, v)	$O(\min (\operatorname{deg}(v), \operatorname{deg}(u)))$	
$\begin{aligned} & \text { outDegree }(v), \\ & \text { insertVertex }(x), \end{aligned}$ $\text { insertEdge }(u, v, w)$	$O(1)$	

ADJACENCY MAP STRUCTURE

- We can store augmenting incidence structures in maps, instead of lists. This is called an adjacency map.
- What would this do to the complexities?
- If it is implemented as a hash table?
- If it is implemented as a red-black tree?

ADJACENCY MATRIX STRUCTURE

- Adjacency matrices store references to edges in a table (in addition to the edge list)
- Augment vertices with integer keys (often done in all graph implementations!)

EXERCISE
 ADJACENCY MATRIX STRUCTURE

- Construct the adjacency matrix for the following graph

ASYMPTOTIC PERFORMANCE ADJACENCY MATRIX STRUCTURE

| - n vertices, m edges |
| :--- | :---: |
| - No parallel edges |
| - No self-loops |\quad Edge List | Space |
| :--- |
| |
| outDegree (v),
 outgoingEdges (v) |
| getEdge (u, v),
 insertEdge (u, v, w),
 removeEdge (e) |
| insertVertex (x),
 removeVertex (v) |

0	1	2	3	4	
	\varnothing	\varnothing	$\{0,2\}$	$\{0,3\}$	\varnothing
2	\varnothing	\varnothing	$\{1,2\}$	$\{1,3\}$	$\{1,4\}$
	$\{0,2\}$	$\{1,2\}$	\varnothing	\varnothing	\varnothing
4	$\{0,3\}$	$\{1,3\}$	\varnothing	\varnothing	$\{3,4\}$
4	\varnothing	$\{1,4\}$	\varnothing	$\{3,4\}$	\varnothing

ASYMPTOTIC PERFORMANCE ADJACENCY MATRIX STRUCTURE

| - n vertices, m edges |
| :--- | :---: |
| - No parallel edges |
| - No self-loops |\quad Edge List \quad| Space | $O\left(n^{2}\right)$ |
| :--- | :--- |
| outDegree (v),
 outgoingEdges (v) | $O(n)$ |
| getEdge (u, v),
 insertEdge (u, v, w),
 removeEdge (e) | $O(1)$ |
| insertVertex (x),
 removeVertex (v) | $O\left(n^{2}\right)$ |

0	1	2	3	4	
	\varnothing	\varnothing	$\{0,2\}$	$\{0,3\}$	\varnothing
2	\varnothing	\varnothing	$\{1,2\}$	$\{1,3\}$	$\{1,4\}$
	$\{0,2\}$	$\{1,2\}$	\varnothing	\varnothing	\varnothing
4	$\{0,3\}$	$\{1,3\}$	\varnothing	\varnothing	$\{3,4\}$
4	\varnothing	$\{1,4\}$	\varnothing	$\{3,4\}$	\varnothing

getEdge (u, v),
insertEdge (u, v, w),
insertVertex (x),
removeVertex(v)

ASYMPTOTIC PERFORMANCE

- n vertices, m edges - No parallel edges - No self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$O(n+m)$	$O(n+m)$	$O\left(n^{2}\right)$
outgoingEdges (v)	$O(m)$	$O(\operatorname{deg}(v))$	$O(n)$
$\operatorname{getEdge}(u, v)$	$O(m)$	$O(\min (\operatorname{deg}(v), \operatorname{deg}(w)))$	$O(1)$
insertEdge (u, v, w), eraseEdge (e)	$O(1)$	$O(1)$	$O(1)$
insertVertex (x)	$O(1)$	$O(1)$	$O\left(n^{2}\right)$
removeVertex (v)	$O(m)$	$O(\operatorname{deg}(v))$	$O\left(n^{2}\right)$

