%
CHAPTER 14 @j

GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND
GOLDWASSER (WILEY 2016)

1\0 GRAPH

/
O : :
° A is a pair G = (V,E), where
®* V is a set of nodes, called
* E is a collection of pairs of vertices, called
® Vertices and edges can store arbitrary elements
®* Example:
® A vertex represents an airport and stores the three-letter airport code

®* An edge represents a flight route between two airports and stores the mileage of the route

APPLICATIONS

Electronic circuits
® Printed circuit board

® Integrated circuit

Transportation networks
® Highway network

® Flight network

Computer networks
® Local area network

® |Internet
* Web

Databases

® Entity-relationship diagram

cslabla cslabi1b

math.brown.edu

L
Z

cs.brown.edu

brown.edu

- gwest.net
att.net /

i
-

_f*‘"““*ux
P cox.net\\ !
‘ N ! John

Paul David

K TERMINOLOGY
1 EDGE AND GRAPH TYPES

/
= ®* Edge Types ®* Graph Types
edge graph (Digraph)
* ordered pair of vertices (u, v) * all the edges are directed
* first vertex u is the origin/source ® e.g., route network
* second vertex U is the destination/target graph
l * e.g,aflight * all the edges are undirected
edge * e.g., flight network
* unordered pair of vertices (u, V) graph
Cf Q * e.g., a flight route ® all the edges are weighted
edge

®* Numeric label associated with edge

flight

jile]als
(w,v) @ AA|g1;206 ORDD—route (OEW

u 802 miles v u 802 miles v

K TERMINOLOGY
1 VERTICES AND EDGES

O

(or end vertices) of an edge

®* U and V are the endpoints of a

®* Edges on a vertex

®* a,d, and b are incident on V

l vertices

U and V' are adjacent
of a vertex
Q X has degree 5

edges

h and i are parallel edges

J is a self-loop

Note: A graph with no parallel edges or self loops are
said to be . Unless otherwise stated, you should
assume all graphs discussed are simple

Q TERMINOLOGY
1 VERTICES AND EDGES

/]
O
edges of a vertex
®* h and b are the outgoing edges of X
edges of a vertex
l ® e, g, and [are incoming edges of X

of a vertex

T ®* X has in-degree 3
2 of a vertex

®* X has out-degree 2

K TERMINOLOGY
1\) PATHS

O

Sequence of alternating vertices and edges

Begins with a vertex

Ends with a vertex

Each edge is preceded and followed by its endpoints

!

C‘) ® Path such that all its vertices and edges are distinct

®* Examples

is a simple path

is a path that is not simple

K TERMINOLOGY
1\) CYCLES

/
O
® Circular sequence of alternating vertices and edges
®* Each edge is preceded and followed by its endpoints
l ® Cycle such that all its vertices and edges are distinct

®* Examples

is a simple cycle

f) is a cycle that is not simple
@) * A digraph is called if it does not contain any cycles

EXERCISE ON TERMINOLOGY

Number of vertices?

Number of edges?

What type of the graph is it?

Show the end vertices of the edge with largest weight

Show the vertices of smallest degree and largest degree
Show the edges incident to the vertices in the above question

|dentify the shortest simple path from HNL to PVD

SRR oAl o B b

|dentify the simple cycle with the most edges

LN
\

O

!
[o

EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS
® Property 1 — Total degree ® Notation
Xydeg(v) =7 ° n number of vertices
® Property 2 — Total number of edges * m number of edges

® In an undirected graph with no self- * deg(v) degree of vertex v

loops and no multiple edges

m < Upper Bound? Example

Lower Bound? < m m n=?
mm ="
s deg(v) =?

A graph with given number of
vertices (4) and maximum
number of edges

LN
\

O

!
[o

EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

®* Property 1 — Total degree ® Notation
Zydeg(v) = 2m * n number of vertices
®* Property 2 — Total number of edges * m number of edges
®* |n an undirected graph with no self-loops and * deg(v) degree of vertex v
no multiple edges
-1
<
2 Example
0<m
m n=4
Proof: Each vertex can have degree at most a m=6
(n—1) s deg(v) =3
A graph with given number of

vertices (4) and maximum
number of edges

LN
\

O

)
[s

EXERCISE {
PROPERTIES OF DIRECTED GRAPHS

® Property 1 — Total in-degree and out- ® Notation
degree ° n number of vertices
2yin — deg(v) =? ° m number of edges
Zyout — deg(v) =7 * deg(v) degree of vertex v

® Property 2 — Total number of edges

® In an directed graph with no self-loops

and no multiple edges

m n=?
m < UpperBound? r’
LowerBound? < m m m =

= deg(v) =7

A graph with given number of
vertices (4) and maximum
number of edges

LN
\

O

)
[s

EXERCISE {
PROPERTIES OF DIRECTED GRAPHS

® Property 1 — Total in-degree and out- ® Notation
degree ° n number of vertices
2yin —deg(v) =m ° m number of edges
Zyout —deg(v) =m * deg(v) degree of vertex v

® Property 2 — Total number of edges

® In an directed graph with no self-loops

and no multiple edges Example
m<nn-1) s n=4%
0<m m m=12
s deg(v) =6
A graph with given number of

vertices (4) and maximum
number of edges

TERMINOLOGY
CONNECTIVITY

® Given two vertices U and v, we say u
vV, and that v is from

u, if there exists a path from u to v. In

an undirected graph is
symmetric
® A graph is if there is a path

between every pair of vertices

®* A digraph is if there

every pair of vertices is reachable

Connected graph
u and v are reachable

Connected digraph

u and v are not mutually reachable

K TERMINOLOGY
1 SUBGRAPHS

O
°* A H of a graph G is a graph
whose vertices and edges are subsets of G,
respectively
l °* A of G is a subgraph Spanning subgraph

that contains all the vertices of G

Cf O g\ of a graph G is O—O

a maximal connected subgraph of G

Non connected graph with two
connected components

TERMINOLOGY
TREES AND FORESTS

* A is a graph without cycles

L\ is connected forest
® This definition of tree is different from

the one of a rooted tree

®* The connected components of a

forest are trees

Tree

Forest

1§ SPANNING TREES AND FORESTS

O

* A of a connected graph

is a spanning subgraph that is a tree

® A spanning free is not unique unless the

graph is a tree

® Spanning trees have applications to the

design of communication networks

Spanning tree

GRAPH ADT

® Vertices and edges are
lightweight objects and

store elements

® Although the ADT is
specified from the graph
object, we often have
similar functions in the

Vertex and Edge obijects

numVertices
vertices

edges
getEdge(u,

endVertices(e):

opposite(v, e):
outDegree(v):

inDegree(v):

outgoingEdges(v):
incomingEdges(v):

insertVertex(x):
insertEdge(u, v, x):

removeVertex(v):
removeEdge(e):

()
()
numEdges():
()
)

. Returns the number of vertices of the graph.
. Returns an iteration of all the vertices of the graph.

Returns the number of edges of the graph.

. Returns an iteration of all the edges of the graph.
. Returns the edge from vertex u to vertex v, if one exists;

otherwise return null. For an undirected graph, there is no
difference between getEdge(u, v) and getEdge(v, u).

Returns an array containing the two endpoint vertices of
edge e. If the graph is directed, the first vertex is the origin
and the second is the destination.

For edge e incident to vertex v, returns the other vertex of
the edge; an error occurs if e is not incident to v.

Returns the number of outgoing edges from vertex v.

Returns the number of incoming edges to vertex v. For
an undirected graph, this returns the same value as does
outDegree(v).

Returns an iteration of all outgoing edges from vertex v.

Returns an iteration of all incoming edges to vertex v. For
an undirected graph, this returns the same collection as
does outgoingEdges(v).

Creates and returns a new Vertex storing element x.

Creates and returns a new Edge from vertex u to vertex v,
storing element x; an error occurs if there already exists an
edge from u to v.

Removes vertex v and all its incident edges from the graph.
Removes edge e from the graph.

EXERCISE ON ADT

outgoingEdges(ord)
incomingEdges(ord)
outDegree(ord)
endVertices({lga, mia})

. opposite(dfw,{dfw,lga})

WAL= el =

6. insertVertex(iah) g

7. insertEdge(mia, pvd, 1200)
8. removeVertex(ord)
Q. removeEdge({dfw, ord})

1 EDGE LIST STRUCTURE

Edge List Vertex List

® An edge list can be stored in a list or a
map /dictionary (e.g. hash table)

® Vertex object

® eclement

® reference to position in vertex sequence

®* Edge object
® element
® origin vertex object
® destination vertex object

* reference to position in edge sequence

Q EXERCISE
1 EDGE LIST STRUCTURE

O

® Construct the edge list for the following graph

, -
%

O

0

ASYMPTOTIC PERFORMANCE

1§ EDGE LIST STRUCTURE

* nvertices, m edges
* No parallel edges
* No self-loops

Edge List

Space

?

getEdge(u, v),
outDegree(v),
outgoingEdges(v)

insertVertex(x),
insertEdge(u, v,w),
removeEdge(e)

removeVertex(v)

/
(

Edge List Vertex List
lol{ {ORD, PVD, 849} ORDJ<e
®»| {ORD, DFW, 802} LGA <@
o> {LGA, PVD, 142} PVD e
o»| {LGA, MIA, 1099} DFW|<e
o {DFW, LGA, 1387} MIA j«@
o> {DFW, MIA, 1120}

O

!
T

ASYMPTOTIC PERFORMANCE

1§ EDGE LIST STRUCTURE

* nvertices, m edges
* No parallel edges Edge List
* No self-loops

Space O(n+m)
getEdge(u, v),
outDegree(v), O(m)
outgoingEdges(v)
insertVertex(x),
insertEdge(u, v, w), 0(1)
removeEdge(e)
removeVertex(v) O(m)

/
(

Edge List Vertex List
lol{ {ORD, PVD, 849} ORDJ<e
®»| {ORD, DFW, 802} LGA <@
o> {LGA, PVD, 142} PVD e
o»| {LGA, MIA, 1099} DFW|<e
o {DFW, LGA, 1387} MIA j«@
o> {DFW, MIA, 1120}

1 ADJACENCY LIST STRUCTURE

Adjacency List

®* Adjacency Lists associate
vertices with their edges
(in addition to edge listl)

® Fach vertex stores a list of
incident edges

® List of references to incident
edge obijects

®* Augmented edge object

® Stores references to associated

positions in incident adjacency

/? lists

Q EXERCISE
1 ADJACENCY LIST STRUCTURE

O

® Construct the adjacency list for the following graph

I

%

ADJACENCY LIST STRUCTURE

1§ ASYMPTOTIC PERFORMANCE g

/
O * nvertices, m edges Adjacency List
* No parallel edges Edge List ;I>[ORD H{ORD, PVD} H{ORD, DFW}
* Ro ccligeilis lob{LGA HiLGA, PvDy HiLca, My Hiica, pFwy |
Space ?
®{PvD H{PVD, ORD} H{PVD, LGA}
l getEdge(u, v) ? . .
outDegree(v), ob{DFwH(DFW, orD} H{DFW, LGA} H{DFwW, MIA} |
insertVertex(x), 2 @M{MIA HiMIA, LGA} H{MIA, DFW)
O insertEdge(u, v,w),
removeEdge(e)
outgoingEdges(v), -
removeVertex(v) '

O

[o

LN
\

ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

* nvertices, m edges

Adjacency List

(

* No parallel edges Edge List ;I>[ORD H{ORD, PVD} H{ORD, DFW}
* Ro ccligeilis lob{LGA HiLGA, PvDy HiLca, My Hiica, pFwy |
Space O(n + m)
®b-PVD H{PVD, ORD} H{PVD, LGA

getEdge(u, v) O(min(deg(v),deg(u))) L e :
outDegree(v), ob{DFwH(DFW, orD} H{DFW, LGA} H{DFwW, MIA} |
insertVertex(x), 0(1) @M{MIA HiMIA, LGA} H{MIA, DFW)
insertEdge(u, v,w),
removeEdge(e)
outgoingEdges(v),

goingEdges(v) 0(deg(v))

removeVertex(v)

ADJACENCY MAP STRUCTURE

®* We can store augmenting incidence structures in maps, instead of lists. This is

called an

®* What would this do to the complexities?
® If it is implemented as a hash table?

® If it is implemented as a red-black tree?

O

1§ ADJACENCY MATRIX STRUCTURE

0 1 2 3 4

0) 0 {0, 2} | {0, 3} 0)

0) 0) {1, 2} | {1, 3} | {1, 4}
{0, 2} | {1, 2} 0) 0 0)
{0, 3} | {1, 3} 0) 0) {3, 4}

0) {1, 4} 0) {3, 4} 0)

112¢
®* Adjacency matrices store references
to edges in a table

(in addition to the edge list)

® Augment vertices with integer keys
(often done in all graph

implementations!)

Q EXERCISE
1 ADJACENCY MATRIX STRUCTURE

O

® Construct the adjacency matrix for the following graph

I

(1,

O

O

LN
\

ASYMPTOTIC PERFORMANCE
ADJACENCY MATRIX STRUCTURE

* nvertices, m edges

{0, 2}

10, 3}

1,2}

1, 3}

{1, 4}

{0, 2}

{1, 2}

{0, 3}

{1, 3}

{3, 4}

{1, 4}

{3, 4}

« No parallel edges Edge List
* No self-loops

Space B
outDegree(v), "
outgoingEdges(v) '
getEdge(u, v),
insertEdge(u, v, w), ?
removeEdge(e)
insertVertex(x), "

removeVertex(v)

O

LN
\

ASYMPTOTIC PERFORMANCE
ADJACENCY MATRIX STRUCTURE

* nvertices, m edges

{0, 2}

10, 3}

1,2}

1, 3}

{1, 4}

{0, 2}

{1, 2}

{0, 3}

{1, 3}

{3, 4}

{1, 4}

{3, 4}

« No parallel edges Edge List
* No self-loops

Space 0(n?*)
outDegree(v),
outgoingEdges(v) O
getEdge(u, v),
insertEdge(u, v,w), ey
removeEdge(e)
insertVertex(x), 0(n?)

removeVertex(v)

ASYMPTOTIC PERFORMANCE

* nvertices, m edges . i
. No parald edges “dge Adjacency i cency
* No self-loops
Space O(n +m) O(n +m) 0(n?)
outgoingEdges(v) 0(m) O(deg(v)) O(n)
getEdge(u, v) O(m) O(min(deg(v),deg(w))) 0(1)
s 0a) 00)
insertVertex(x) 0(1) 0(1) 0(n?)
removeVertex(v) 0(m) O(deg(v)) 0(n?)

