
JAVA ALGORITHMS



SUMMARY OF UTILITIES

• java.util.Arrays – static 

utilities for raw arrays

• Searching and sorting

• Equality comparisons and hash codes

• Fill

• Copy

• java.util.Collections –

similar items for Lists. Also includes:

• Min, max, counts

• Reverse, shuffle

• There are many more algorithms and 

utilities in the java library!

• To find how to use them, go to the Java 

API!



EXAMPLE OF USING SORT

1.Scanner s = new Scanner(new File(“numbers.txt”));

2.ArrayList<Integer> numbers = new ArrayList<>();

3.while(s.hasNextInt())

4. numbers.add(s.nextInt());

5.…elsewhere…

6.Collections.sort(numbers);



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• In java.util.Collection provides a 

function stream(). A stream() allows 

you to perform functions over the data in 

the collection. Examples:

• filter – create a stream based on a 

predicate

• forEach – apply an action to each element

• map – create a new stream after applying an 

action to each element

• Many, many more

• You can always use the classic method of 

having a specialized file implement the 

required interface.

• OR you can use anonymous classes –

nameless classes

• OR you can use a lambda expression

• A lambda is an anonymous single method 

class, but defined with extremely terse syntax

• Can also loosly define them as nameless 

methods



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Take the following example function

1. public static void 

2. printIntegersInRange(

3. List<Integer> nums,

4. Integer low, 

5. Integer high) {

6. for(Integer i : nums)

7. if(i >= low && i <= high)

8. System.out.println(i);

9. }

• We should be able to generalize this. We already 

know how, use interfaces

1. public interface CheckInteger {

2. boolean test(Integer n);

3. }

• Then our function becomes

1. public static void 

2. printIntegersIf(

3. List<Integer> nums,

4. CheckInteger tester) {

5. for(Integer i : nums)

6. if(tester.test(i))

7. System.out.println(i);

8. }



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with a class

1. public class CheckRange0To100

2. implements CheckInteger {

3. public static Boolean 

4. test(Integer n) {

5. return n >= 0 && n <=100;

6. }

7. }

• However, this seems really extensive for a one 

off class, right?

• Of course, so Java also has the ability to write 

things with anonymous classes…



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with a class

1. public class CheckRange0To100

2. implements CheckInteger {

3. public static Boolean 

4. test(Integer n) {

5. return n >= 0 && n <=100;

6. }

7. }

1. printIntegersIf(nums,

2. new CheckRange0To100());

• However, this seems really extensive for a one off 

class, right?

• Of course, so Java also has the ability to write 

things with anonymous classes…



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with an anonymous class

1. printIntegersIf(nums,

2. new CheckInteger() {

3. public boolean

4. test(Integer i) {

5. return i >= 0 && i <= 100;

6. }

7. }

8. );

• However, this still seems really extensive 

for a one off class, right?

• Of course, so Java 8 introduced the 

widely known concept of lambda 

functions



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with a lambda expression

1. printIntegersIf(nums,

2. (Integer i) -> i >= 0 && i <= 100

3. );

• Short and sweet!

• This allows us to write generic 

functions with functions as 

parameters easily!



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with the standard Java provided functionals

found in the package java.util.function

1. public static void 

2. printIntegersInRange(

3. List<Integer> nums,

4. Predicate<Integer> tester) {

5. for(Integer i : nums)

6. if(tester.test(i))

7. System.out.println(i);

8. }

• And our lambda can become even shorter!

1. printIntegersIf(nums,

2. i -> i >= 0 && i <= 100

3. );

• Sort example
• Collections.sort(nums, 

(i1, i2) -> -i1.compareTo(i2));

• Full tutorial

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


PROBLEM

• Generate a random list of 1000 integers between 0 and 100

• Filter the list to numbers between 40 and 60

• Map a function on each element that applies a random power between 2 and 

4 to each element of the list

• Sum up and average the list

• Do this all without loops, only use lambdas and functions of stream!

• With the rest of the time, work on the next programming assignment 


