
CHAPTER 10
MAPS, HASH TABLES, AND SKIP LISTS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

0

1

2

3

4 451-229-0004

981-101-0002

025-612-0001

MAPS

• A map models a searchable collection of key-value entries

• The main operations of a map are for searching, inserting, and deleting items

• Multiple entries with the same key are not allowed

• Applications:

• address book

• student-record database

• Often called associative containers

THE MAP ADT

• get(k): if the map 𝑀 has an entry with key 𝑘, return its associated value; else, return null

• put(k, v): insert entry (𝑘, 𝑣) into the map 𝑀; if key 𝑘 is not already in 𝑀, then return null;

else, return old value associated with 𝑘

• remove(k): if the map𝑀 has an entry with key 𝑘, remove it from 𝑀 and return its associated

value; else, return null

• size(), isEmpty()

• entrySet(): return an iterable collection of the entries in 𝑀

• keySet(): return an iterable collection of the keys in 𝑀

• values(): return an iterator of the values in 𝑀

EXAMPLE

• Operation Output Map

• isEmpty() true Ø

• put(5,A) null (5,A)

• put(7,B) null (5,A),(7,B)

• put(2,C) null (5,A),(7,B),(2,C)

• put(8,D) null (5,A),(7,B),(2,C),(8,D)

• put(2,E) C (5,A),(7,B),(2,E),(8,D)

• get(7) B (5,A),(7,B),(2,E),(8,D)

• get(4) null (5,A),(7,B),(2,E),(8,D)

• get(2) E (5,A),(7,B),(2,E),(8,D)

• size() 4 (5,A),(7,B),(2,E),(8,D)

• remove(5) A (7,B),(2,E),(8,D)

• remove(2) E (7,B),(8,D)

• get(2) null (7,B),(8,D)

• isEmpty() false (7,B),(8,D)

LIST-BASED MAP

• We can implement a map with an unsorted list

• Store the entries in arbitrary order

• Complexity of get, put, remove?

• 𝑂(𝑛) on put, get, and remove

tailheader nodes/positions

entries

9 c 6 c 5 c 8 c

DIRECT ADDRESS TABLE MAP IMPLEMENTATION

• A direct address table is a map in which

• The keys are in the range [0, 𝑁]

• Stored in an array 𝑇 of size 𝑁

• Entry with key 𝑘 stored in 𝑇[𝑘]

• Performance:

• put(k, v), get(k), and remove(k) all take 𝑂(1) time

• Space - requires space 𝑂(𝑁), independent of 𝑛, the number of entries stored in the map

• The direct address table is not space efficient unless the range of the keys is close to

the number of elements to be stored in the map, i.e., unless 𝑛 is close to 𝑁.

SORTED MAP

• A Sorted Map supports the usual map

operations, but also maintains an order

relation for the keys.

• Naturally supports

• Sorted search tables - store dictionary in

an array by non-decreasing order of the

keys

• Utilizes binary search

• Sorted Map ADT adds the following

functionality to a map

• firstEntry(), lastEntry() –

return iterators to entries with the smallest

and largest keys, respectively

• ceilingEntry(k),

floorEntry(k) – return an iterator

to the least/greatest key value greater

than/less than or equal to 𝑘

• lowerEntry(k),

higherEntry(k) – return an

iterator to the greatest/least key value

less than/greater than 𝑘

• etc

EXAMPLE OF ORDERED MAP: BINARY SEARCH

• Binary search performs operation get(k) on an ordered search table

• similar to the high-low game

• at each step, the number of candidate items is halved

• terminates after a logarithmic number of steps

• Example

get(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

SIMPLE MAP IMPLEMENTATION SUMMARY

put(k, v) get(k) Space

Unsorted list 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Direct Address Table 𝑂(1) 𝑂(1) 𝑂(𝑁)

Sorted Search Table

(Naturally supported Sorted Map)

𝑂(𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

DEFINITIONS

• A set is an unordered collection of elements, without duplicates that typically

supports efficient membership tests.

• Elements of a set are like keys of a map, but without any auxiliary values.

• A multiset (also known as a bag) is a set-like container that allows duplicates.

• A multimap (also known as a dictionary) is similar to a traditional map, in that

it associates values with keys; however, in a multimap the same key can be

mapped to multiple values.

• For example, the index of a book maps a given term to one or more locations at which

the term occurs.

SET ADT

GENERIC MERGING

• Generalized merge of two sorted lists A

and B

• Template method genericMerge

• Auxiliary methods

• aIsLess

• bIsLess

• bothAreEqual

• Runs in 𝑂(𝑛𝐴 + 𝑛𝐵) time provided the

auxiliary methods run in 𝑂(1) time

Algorithm genericMerge(A, B)

Input: Sets A,B as sorted lists

Output: Set 𝑆
1. 𝑆 ← ∅
2. while ¬𝐴.isEmpty()∧ ¬𝐵.isEmpty() do

3. 𝑎 ← 𝐴.first(); 𝑏 ← 𝐵.first()
4. if 𝑎 < 𝑏
5. aIsLess(a, S) //generic action

6. 𝐴.removeFirst();
7. else if 𝑏 < 𝑎
8. bIsLess(b, S) //generic action

9. 𝐵.removeFirst()
10. else //𝑎 = 𝑏
11. bothAreEqual(a, b, S) //generic action

12. 𝐴.removeFirst(); 𝐵.removeFirst()
13.while ¬𝐴.isEmpty() do

14. aIsLess(A.first(), S); 𝐴.eraseFront()
15.while ¬𝐵.isEmpty() do

16. bIsLess(B.first(), S); 𝐵.removeFirst()
17.return 𝑆

USING GENERIC MERGE FOR SET OPERATIONS

• Any of the set operations can be implemented using a generic merge

• For example:

• For intersection: only copy elements that are duplicated in both list

• For union: copy every element from both lists except for the duplicates

• All methods run in linear time

MULTIMAP

• A multimap is similar to a map, except that it can store multiple entries with

the same key

• We can implement a multimap 𝑀 by means of a map 𝑀′

• For every key 𝑘 in 𝑀, let 𝐸(𝑘) be the list of entries of 𝑀 with key 𝑘

• The entries of 𝑀′ are the pairs (𝑘, 𝐸(𝑘))

MULITMAPS

HASH TABLES

INTUITIVE NOTION OF A MAP

• Intuitively, a map 𝑀 supports the abstraction of using keys as indices with a

syntax such as 𝑀 𝑘 .

• As a mental warm-up, consider a restricted setting in which a map with 𝑛 items

uses keys that are known to be integers in a range from 0 to 𝑁 − 1, for some

𝑁 ≥ 𝑛.

MORE GENERAL KINDS OF KEYS

• But what should we do if our keys are not integers in the range from 0 to

𝑁–1?

• Use a hash function to map general keys to corresponding indices in a table.

• For instance, the last four digits of a Social Security number.

0
1
2
3
4 451-229-0004

981-101-0002

025-612-0001

…

HASH TABLES

• A Hash function ℎ 𝑘 → [0,𝑁 − 1]

• The integer ℎ(𝑘) is referred to as the hash value of key 𝑘

• Example - ℎ 𝑘 = 𝑘 mod 𝑁 could be a hash function for integers

• Hash tables consist of

• A hash function ℎ

• Array 𝐴 of size 𝑁 (either to an element itself or to a “bucket”)

• Goal is to store elements 𝑘, 𝑣 at index 𝑖 = ℎ 𝑘

ISSUES WITH HASH TABLES

• Issues

• Collisions - some keys will map to the same index of H (otherwise we have a Direct

Address Table).

• Chaining - put values that hash to same location in a linked list (or a “bucket”)

• Open addressing - if a collision occurs, have a method to select another location in the table.

• Load factor

• Rehashing

EXAMPLE

• We design a hash table for a Map

storing items (SSN, Name), where

SSN (social security number) is a

nine-digit positive integer

• Our hash table uses an array of size

𝑁 = 10,000 and the hash function

ℎ 𝑘 = last four digits of 𝑘

0

1

2

3

4

9997

9998

9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001

HASH FUNCTIONS

• A hash function is usually specified

as the composition of two functions:

• Hash code:

ℎ1: keys integers

• Compression function:

ℎ2: integers [0, 𝑁 − 1]

• The hash code is applied first, and

the compression function is applied

next on the result, i.e.,

ℎ 𝑘 = ℎ2 ℎ1 𝑘

• The goal of the hash function is to

“disperse” the keys in an apparently

random way

HASH CODES

• Memory address:

• We reinterpret the memory address of the

key object as an integer

• Good in general, except for numeric and

string keys

• Integer cast:

• We reinterpret the bits of the key as an

integer

• Suitable for keys of length less than or equal

to the number of bits of the integer type (e.g.,

byte, short, int and float in C++)

• Component sum:

• We partition the bits of the key into

components of fixed length (e.g., 16 or

32 bits) and we sum the components

(ignoring overflows)

• Suitable for numeric keys of fixed

length greater than or equal to the

number of bits of the integer type (e.g.,

long and double in C++)

HASH CODES

• Polynomial accumulation:

• We partition the bits of the key into a

sequence of components of fixed length

(e.g., 8, 16 or 32 bits)

𝑎0𝑎1…𝑎𝑛−1

• We evaluate the polynomial

𝑝 𝑧 = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 +⋯+ 𝑎𝑛−1𝑧

𝑛−1

at a fixed value z, ignoring overflows

• Especially suitable for strings (e.g., the

choice z = 33 gives at most 6 collisions on a

set of 50,000 English words)

• Cyclic Shift:

• Like polynomial accumulation except

use bit shifts instead of multiplications

and bitwise or instead of addition

• Can be used on floating point

numbers as well by converting the

number to an array of characters

COMPRESSION FUNCTIONS

• Division:

• ℎ2 𝑘 = 𝑘 mod 𝑁

• The size N of the hash table is usually

chosen to be a prime

• The reason has to do with number

theory and is beyond the scope of this

course

• Multiply, Add and Divide (MAD):

• ℎ2 𝑘 = 𝑎𝑘 + 𝑏 mod 𝑁

• 𝑎 and 𝑏 are nonnegative integers such

that

𝑎 mod 𝑁 ≠ 0

• Otherwise, every integer would map to

the same value 𝑏

COLLISION RESOLUTION WITH
SEPARATE CHAINING

• Collisions occur when different

elements are mapped to the same

cell

• Separate Chaining: let each cell in

the table point to a linked list of

entries that map there

• Chaining is simple, but requires

additional memory outside the table

0

1

2

3

4 451-229-0004 981-101-0004

025-612-0001

EXERCISE
SEPARATE CHAINING

• Assume you have a hash table 𝐻 with 𝑁 = 9 slots (𝐴[0 − 8]) and let the hash

function be ℎ 𝑘 = 𝑘 mod 𝑁

• Demonstrate (by picture) the insertion of the following keys into a hash table

with collisions resolved by chaining

• 5, 28, 19, 15, 20, 33, 12, 17, 10

COLLISION RESOLUTION WITH
OPEN ADDRESSING - LINEAR PROBING

• In Open addressing the colliding item is

placed in a different cell of the table

• Linear probing handles collisions by placing

the colliding item in the next (circularly)

available table cell. So the 𝑖th cell checked is:

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑁

• Each table cell inspected is referred to as a

“probe”

• Colliding items lump together, causing future

collisions to cause a longer probe sequence

• Example:

• ℎ 𝑘 = 𝑘 mod 13

• Insert keys 18, 41, 22, 44, 59, 32, 31,

73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

SEARCH WITH LINEAR PROBING

• Consider a hash table A that uses linear

probing

• get(k)
• We start at cell ℎ 𝑘

• We probe consecutive locations until one

of the following occurs

• An item with key 𝑘 is found, or

• An empty cell is found, or

• 𝑁 cells have been unsuccessfully probed

Algorithm get(k)

1. 𝑖 ← ℎ 𝑘
2. 𝑝 ← 0
3. repeat

4. 𝑐 ← 𝐴 𝑖
5. if 𝑐 ≠ ∅
6. return 𝑛𝑢𝑙𝑙
7. else if 𝑐.key()= 𝑘
8. return 𝑐
9. else

10. 𝑖 ← 𝑖 + 1 mod 𝑁
11. 𝑝 ← 𝑝 + 1
12. until 𝑝 = 𝑁
13. return 𝑛𝑢𝑙𝑙

UPDATES WITH LINEAR PROBING

• To handle insertions and deletions, we

introduce a special object, called

DEFUNCT, which replaces deleted

elements

• remove(k)
• We search for an item with key 𝑘

• If such an item 𝑘, 𝑣 is found, we

replace it with the special item DEFUNCT

• Else, we return null

• put(k, v)

• We start at cell ℎ(𝑘)

• We probe consecutive cells until one of

the following occurs

• A cell 𝑖 is found that is either empty or

stores DEFUNCT, or

• 𝑁 cells have been unsuccessfully

probed

EXERCISE
OPEN ADDRESSING – LINEAR PROBING

• Assume you have a hash table 𝐻 with 𝑁 = 11 slots (𝐴[0 − 10]) and let the

hash function be ℎ 𝑘 = 𝑘 mod 𝑁

• Demonstrate (by picture) the insertion of the following keys into a hash table

with collisions resolved by linear probing.

• 10, 22, 31, 4, 15, 28, 17, 88, 59

COLLISION RESOLUTION WITH
OPEN ADDRESSING – QUADRATIC PROBING

• Linear probing has an issue with clustering

• Another strategy called quadratic probing uses a hash function

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖2 mod 𝑁

for 𝑖 = 0, 1,… ,𝑁 − 1

• This can still cause secondary clustering

COLLISION RESOLUTION WITH
OPEN ADDRESSING - DOUBLE HASHING

• Double hashing uses a secondary hash

function ℎ2(𝑘) and handles collisions by

placing an item in the first available cell of

the series

ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2 𝑘 mod 𝑁

for 𝑖 = 0, 1, … , 𝑁 − 1

• The secondary hash function ℎ2 𝑘 cannot

have zero values

• The table size 𝑁 must be a prime to allow

probing of all the cells

• Common choice of compression map

for the secondary hash function:

ℎ2 𝑘 = 𝑞 − 𝑘 mod 𝑞

where

• 𝑞 < 𝑁

• 𝑞 is a prime

• The possible values for ℎ2 𝑘 are

1, 2, … , 𝑞

PERFORMANCE OF HASHING

• In the worst case, searches, insertions and removals

on a hash table take 𝑂 𝑛 time

• The worst case occurs when all the keys inserted into

the map collide

• The load factor 𝛼 =
𝑛

𝑁
affects the performance of

a hash table

• Assuming that the hash values are like random

numbers, it can be shown that the expected number

of probes for an insertion with open addressing is
1

1 − 𝛼
=
1

1 − 𝑛 𝑁
=
1

 𝑁 − 𝑛
𝑁

=
𝑁

𝑁 − 𝑛

• The expected running time of all the Map

ADT operations in a hash table is 𝑂 1

• In practice, hashing is very fast provided the

load factor is not close to 100%

• Applications of hash tables

• Small databases

• Compilers

• Browser caches

UNIFORM HASHING ASSUMPTION

• The probe sequence of a key 𝑘 is the sequence of slots probed when looking for 𝑘

• In open addressing, the probe sequence is ℎ 𝑘, 0 , ℎ 𝑘, 1 , … , ℎ 𝑘,𝑁 − 1

• Uniform Hashing Assumption

• Each key is equally likely to have any one of the 𝑁! permutations of {0, 1, … ,𝑁 − 1} as is

probe sequence

• Note: Linear probing and double hashing are far from achieving Uniform Hashing

• Linear probing: 𝑁 distinct probe sequences

• Double Hashing: 𝑁2 distinct probe sequences

PERFORMANCE OF UNIFORM HASHING

• Theorem: Assuming uniform hashing and an open-address hash table with load

factor 𝛼 =
𝑛

𝑁
< 1, the expected number of probes in an unsuccessful search is

at most
1

1−𝛼
.

• Exercise: compute the expected number of probes in an unsuccessful search in

an open address hash table with 𝛼 =
1

2
, 𝛼 =

3

4
, and 𝛼 =

99

100
.

ON REHASHING

• Keeping the load factor low is vital for performance

• When resizing the table:

• Reallocate space for the array (of size that is a prime)

• Design a new hash function (new parameters) for the new array size (practically, change

the mod)

• For each item you reinsert into the table rehash

SUMMARY MAPS (SO FAR)

put(k, v) get(k) Space

Unsorted list 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Direct Address Table 𝑂(1) 𝑂(1) 𝑂(𝑁)

Sorted Search Table

(Naturally supported Sorted Map)

𝑂(𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

Hashing

(chaining)
𝑂
𝑛

𝑁
𝑂
𝑛

𝑁
𝑂(𝑛 + 𝑁)

Hashing

(open addressing)
𝑂
1

1 −
𝑛
𝑁

𝑂
1

1 −
𝑛
𝑁

𝑂(𝑁)

SKIP LISTS

+-

S0

S1

S2

S3

+- 10 362315

+- 15

+- 2315

RANDOMIZED ALGORITHMS

• A randomized algorithm controls its execution

through random selection (e.g., coin tosses)

• It contains statements like:

𝑏 ← randomBit()

if 𝑏 = 0

do something…

else //𝑏 = 1

do something else…

• Its running time depends on the outcomes of

the “coin tosses”

• Through probabilistic analysis we can derive the expected

running time of a randomized algorithm

• We make the following assumptions in the analysis:

• the coins are unbiased

• the coin tosses are independent

• The worst-case running time of a randomized algorithm is

often large but has very low probability (e.g., it occurs

when all the coin tosses give “heads”)

• We use a randomized algorithm to insert items into a skip

list to insert in expected 𝑂(log 𝑛)–time

• When randomization is used in data structures they are

referred to as probabilistic data structures

WHAT IS A SKIP LIST?

• A skip list for a set S of distinct (key, element) items is a series of lists

𝑆0, 𝑆1, … , 𝑆ℎ
• Each list 𝑆𝑖 contains the special keys +∞ and −∞

• List 𝑆0 contains the keys of 𝑆 in non-decreasing order

• Each list is a subsequence of the previous one, i.e.,

𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆ℎ

• List 𝑆ℎ contains only the two special keys

• Skip lists are one way to implement the Ordered Map ADT

• Java applet

56 64 78 +31 34 44- 12 23 26

+-

+31-

64 +31 34- 23

S0

S1

S2

S3

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/

IMPLEMENTATION

• We can implement a skip list with quad-

nodes

• A quad-node stores:

• (Key, Value)

• links to the nodes before, after, below,

and above

• Also, we define special keys +∞ and

−∞, and we modify the key

comparator to handle them

x

quad-node

SEARCH - GET(K)

• We search for a key 𝑘 in a skip list as follows:

• We start at the first position of the top list

• At the current position 𝑝, we compare 𝑘 with 𝑦 ← 𝑝. next(). key()
𝑥 = 𝑦: we return 𝑝. next(). value()
𝑥 > 𝑦: we scan forward
𝑥 < 𝑦: we drop down

• If we try to drop down past the bottom list, we return null

• Example: search for 78

+-

S0

S1

S2

S3

+31-

64 +31 34- 23

56 64 78 +31 34 44- 12 23 26

EXERCISE
SEARCH

• We search for a key 𝑘 in a skip list as follows:

• We start at the first position of the top list

• At the current position 𝑝, we compare 𝑘 with 𝑦 ← 𝑝. next(). key()
𝑥 = 𝑦: we return 𝑝. next(). value()
𝑥 > 𝑦: we scan forward
𝑥 < 𝑦: we drop down

• If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Ex 1: search for 64: list the (𝑆𝑖, node) pairs visited and the return value

• Ex 2: search for 27: list the (𝑆𝑖, node) pairs visited and the return value

+-

S0

S1

S2

S3

+31-

64 +31 34- 23

56 64 78 +31 34 44- 12 23 26

INSERTION - PUT(K, V)

• To insert an item (𝑘, 𝑣) into a skip list, we use a randomized algorithm:

• We repeatedly toss a coin until we get tails, and we denote with 𝑖 the number of times the coin came up heads

• If 𝑖 ≥ ℎ, we add to the skip list new lists 𝑆ℎ+1, … , 𝑆𝑖+1 each containing only the two special keys

• We search for 𝑘 in the skip list and find the positions 𝑝0, 𝑝1, … , 𝑝𝑖 of the items with largest key less than 𝑘 in each

list 𝑆0, 𝑆1, … , 𝑆𝑖

• For 𝑖 ← 0,… , 𝑖, we insert item (𝑘, 𝑣) into list 𝑆𝑖 after position 𝑝𝑖

• Example: insert key 15, with 𝑖 = 2

+-

S0

S1

S2

S3

+- 10 362315

+- 15

+- 2315

+- 10 36

+-

23

23 +-

S0

S1

S2

p0

p1

p2

DELETION - REMOVE(K)

• To remove an item with key 𝑘 from a skip list, we proceed as follows:

• We search for 𝑘 in the skip list and find the positions 𝑝0, 𝑝1, … , 𝑝𝑖 of the items with key 𝑘, where

position 𝑝𝑖 is in list 𝑆𝑖

• We remove positions 𝑝0, 𝑝1, … , 𝑝𝑖 from the lists 𝑆0, 𝑆1, … , 𝑆𝑖

• We remove all but one list containing only the two special keys

• Example: remove key 34

- +4512

- +

23

23- +

S0

S1

S2

- +

S0

S1

S2

S3

- +4512 23 34

- +34

- +23 34
p0

p1

p2

SPACE USAGE

• The space used by a skip list depends on

the random bits used by each invocation of

the insertion algorithm

• We use the following two basic probabilistic

facts:

• Fact 1: The probability of getting 𝑖

consecutive heads when flipping a coin is
1

2𝑖

• Fact 2: If each of 𝑛 items is present in a set

with probability 𝑝, the expected size of the

set is 𝑛𝑝

• Consider a skip list with 𝑛 items

• By Fact 1, we insert an item in list 𝑆𝑖 with

probability
1

2𝑖

• By Fact 2, the expected size of list 𝑆𝑖 is
𝑛

2𝑖

• The expected number of nodes used by the

skip list is

𝑖=0

ℎ
𝑛

2𝑖
= 𝑛

𝑖=0

ℎ
1

2𝑖
< 2𝑛

• Thus the expected space is 𝑂 2𝑛

HEIGHT

• The running time of find 𝑘 , put 𝑘, 𝑣 , and

erase 𝑘 operations are affected by the

height ℎ of the skip list

• We show that with high probability, a skip

list with 𝑛 items has height 𝑂 log 𝑛

• We use the following additional

probabilistic fact:

• Fact 3: If each of 𝑛 events has probability 𝑝,
the probability that at least one event occurs

is at most 𝑛𝑝

• Consider a skip list with 𝑛 items

• By Fact 1, we insert an item in list 𝑆𝑖 with

probability
1

2𝑖

• By Fact 3, the probability that list 𝑆𝑖 has at

least one item is at most
𝑛

2𝑖

• By picking 𝑖 = 3 log 𝑛, we have that the

probability that 𝑆3 log 𝑛 has at least one

item is

at most
𝑛

23 log 𝑛
=
𝑛

𝑛3
=
1

𝑛2

• Thus a skip list with 𝑛 items has height at

most 3 log 𝑛 with probability at least 1 −
1

𝑛2

SEARCH AND UPDATE TIMES

• The search time in a skip list is proportional to

• the number of drop-down steps

• the number of scan-forward steps

• The drop-down steps are bounded by the

height of the skip list and thus are 𝑂 log 𝑛
expected time

• To analyze the scan-forward steps, we use yet

another probabilistic fact:

• Fact 4: The expected number of coin tosses

required in order to get tails is 2

• When we scan forward in a list, the destination

key does not belong to a higher list

• A scan-forward step is associated with a former coin

toss that gave tails

• By Fact 4, in each list the expected number of

scan-forward steps is 2

• Thus, the expected number of scan-forward steps

is 𝑂(log 𝑛)

• We conclude that a search in a skip list takes

𝑂 log 𝑛 expected time

• The analysis of insertion and deletion gives

similar results

EXERCISE

• You are working for ObscureDictionaries.com a new online start-up which specializes

in sci-fi languages. The CEO wants your team to describe a data structure which will

efficiently allow for searching, inserting, and deleting new entries. You believe a skip

list is a good idea, but need to convince the CEO. Perform the following:

• Illustrate insertion of “X-wing” into this skip list. Randomly generated (1, 1, 1, 0).

• Illustrate deletion of an incorrect entry “Enterprise”

• Argue the complexity of deleting from a skip list

- +YodaBoba Fett

- +

Enterprise

Enterprise- +

S0

S1

S2

SUMMARY

• A skip list is a data structure for

dictionaries that uses a randomized

insertion algorithm

• In a skip list with 𝑛 items

• The expected space used is 𝑂 𝑛

• The expected search, insertion and

deletion time is 𝑂(log 𝑛)

• Using a more complex probabilistic

analysis, one can show that these

performance bounds also hold with

high probability

• Skip lists are fast and simple to

implement in practice

