CHAPTER 10
MAPS, HASH TABLES, AND SKIP LISTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

MAPS

- A map models a searchable collection of key-value entries
- The main operations of a map are for searching, inserting, and deleting items
- Multiple entries with the same key are not allowed
- Applications:
- address book
- student-record database
- Often called associative containers

THE MAP ADT

- get (k) : if the map M has an entry with key k, return its associated value; else, return null
- put (k, v) : insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- remove (k) : if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- size(), isEmpty()
- entrySet () : return an iterable collection of the entries in M
- keySet () : return an iterable collection of the keys in M
- values () : return an iterator of the values in M

EXAMPLE

- Operation

- isEmpty()
- put $(5, A)$
- put $(7, B)$
- put $(2, C)$
- put $(8$, D)
- put $(2, E)$
- get (7)
- get (4)
- get (2)
- size()
- remove (5)
- remove (2)
- get (2)
- isEmpty()

Output
true
null
null
null
null
C
B
null

E

4
A
E
null
false

Map

\varnothing
(5, A)
$(5, A),(7, B)$
$(5, A),(7, B),(2, C)$
$(5, A),(7, B),(2, C),(8, D)$
$(5, A),(7, B),(2, E),(8, D)$
$(7, B),(2, E),(8, D)$
$(7, B),(8, D)$
$(7, B),(8, D)$
$(7, B),(8, D)$

LIST-BASED MAP

- We can implement a map with an unsorted list
- Store the entries in arbitrary order
- Complexity of get, put, remove?
- $O(n)$ on put, get, and remove

DIRECT ADDRESS TABLE MAP IMPLEMENTATION

- A direct address table is a map in which
- The keys are in the range $[0, N]$
- Stored in an array T of size N
- Entry with key k stored in $T[k]$
- Performance:
- put (k, v), get (k), and remove (k) all take $O(1)$ time
- Space - requires space $O(N)$, independent of n, the number of entries stored in the map
- The direct address table is not space efficient unless the range of the keys is close to the number of elements to be stored in the map, i.e., unless n is close to N.

SORTED MAP

- A Sorted Map supports the usual map operations, but also maintains an order relation for the keys.
- Naturally supports
- Sorted search tables - store dictionary in an array by non-decreasing order of the keys
- Utilizes binary search
- Sorted Map ADT adds the following functionality to a map
- firstEntry() , lastEntry() return iterators to entries with the smallest and largest keys, respectively
- ceilingEntry(k), floorEntry (k) - return an iterator to the least/greatest key value greater than/less than or equal to k
- lowerEntry(k), higherEntry (k) - return an iterator to the greatest/least key value less than/greater than k

EXAMPLE OF ORDERED MAP: BINARY SEARCH

- Binary search performs operation
get (k)
on an ordered search table
- similar to the high-low game
- at each step, the number of candidate items is halved
- terminates after a logarithmic number of steps
- Example get (7)

SIMPLE MAP IMPLEMENTATION SUMMARY

	put (k, v)	get (k)	Space
Unsorted list	$O(n)$	$O(n)$	$O(n)$
Direct Address Table	$O(1)$	$O(1)$	$O(N)$
Sorted Search Table (Naturally supported Sorted Map)	$O(n)$	$O(\log n)$	$O(n)$

DEFINITIONS

- A set is an unordered collection of elements, without duplicates that typically supports efficient membership tests.
- Elements of a set are like keys of a map, but without any auxiliary values.
- A multiset (also known as a bag) is a set-like container that allows duplicates.
- A multimap (also known as a dictionary) is similar to a traditional map, in that it associates values with keys; however, in a multimap the same key can be mapped to multiple values.
- For example, the index of a book maps a given term to one or more locations at which the term occurs.
iterator(): Returns an iterator of the elements of S.
There is also support for the traditional mathematical set operations of union, intersection, and subtraction of two sets S and T :
$S \cup T=\{e: e$ is in S or e is in $T\}$,
$S \cap T=\{e: e$ is in S and e is in $T\}$,
$S-T=\{e: e$ is in S and e is not in $T\}$.
$\operatorname{addAll}(T)$: Updates S to also include all elements of set T, effectively replacing S by $S \cup T$.
retainAll (T) : Updates S so that it only keeps those elements that are also elements of set T, effectively replacing S by $S \cap T$.
removeAll (T) : Updates S by removing any of its elements that also occur in set T, effectively replacing S by $S-T$.

GENERIC MERGING

- Generalized merge of two sorted lists A and B
- Template method genericMerge
- Auxiliary methods
- aIsLess
- bIsLess
- bothAreEqual
- Runs in $O\left(n_{A}+n_{B}\right)$ time provided the auxiliary methods run in $O(1)$ time

Algorithm genericMerge (A, B)
Input: Sets A, B as sorted lists
Output: Set S

1. $S \leftarrow \emptyset$
2. while $\neg A$.isEmpty() $\wedge \neg B$.isEmpty() do
3. $\quad a \leftarrow A$.first() $; b \leftarrow B$.first()
4. if $a<b$
5. aIsLess(a, S) //generic action
6. A.removeFirst();
7. else if $b<a$
8. bIsLess (b, S) //generic action
B.removeFirst()
9. else $/ / a=b$
10. bothAreEqual(a, b, S) //generic action
11. A.removeFirst(); B.removeFirst()
12. while $\neg A$.isEmpty() do
13. aIsLess(A.first(), S) ; A.eraseFront()
14. while $\neg B$.isEmpty() do
15. bIsLess(B.first(), S) ; B.removeFirst()
16. return S

USING GENERIC MERGE FOR SET OPERATIONS

- Any of the set operations can be implemented using a generic merge
- For example:
- For intersection: only copy elements that are duplicated in both list
- For union: copy every element from both lists except for the duplicates
- All methods run in linear time

MULTIMAP

- A multimap is similar to a map, except that it can store multiple entries with the same key
- We can implement a multimap M by means of a map M^{\prime}
- For every key k in M, let $E(k)$ be the list of entries of M with key k
- The entries of M^{\prime} are the pairs $(k, E(k))$

MULITMAPS

$\operatorname{get}(k)$: Returns a collection of all values associated with key k in the multimap.
$\operatorname{put}(k, v)$: Adds a new entry to the multimap associating key k with value v, without overwriting any existing mappings for key k.
remove (k, v) : Removes an entry mapping key k to value v from the multimap (if one exists).
removeAll (k) : Removes all entries having key equal to k from the multimap.
size(): Returns the number of entries of the multiset (including multiple associations).
entries(): Returns a collection of all entries in the multimap.
keys(): Returns a collection of keys for all entries in the multimap (including duplicates for keys with multiple bindings).
keySet(): Returns a nonduplicative collection of keys in the multimap.
values(): Returns a collection of values for all entries in the multimap.

HASH TABLES

INTUITIVE NOTION OF A MAP

- Intuitively, a map M supports the abstraction of using keys as indices with a syntax such as $M[k]$.
- As a mental warm-up, consider a restricted setting in which a map with n items uses keys that are known to be integers in a range from 0 to $N-1$, for some $N \geq n$.

MORE GENERAL KINDS OF KEYS

- But what should we do if our keys are not integers in the range from 0 to $N-1$?
- Use a hash function to map general keys to corresponding indices in a table.
- For instance, the last four digits of a Social Security number.

HASH TABLES

- A Hash function $h(k) \rightarrow[0, N-1]$
- The integer $h(k)$ is referred to as the hash value of key k
- Example $-h(k)=k \bmod N$ could be a hash function for integers
- Hash tables consist of
- A hash function h
- Array A of size N (either to an element itself or to a "bucket")
- Goal is to store elements (k, v) at index $i=h(k)$

ISSUES WITH HASH TABLES

- Issues
- Collisions - some keys will map to the same index of H (otherwise we have a Direct Address Table).
- Chaining - put values that hash to same location in a linked list (or a "bucket")
- Open addressing - if a collision occurs, have a method to select another location in the table.
- Load factor
- Rehashing

EXAMPLE

- We design a hash table for a Map storing items (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size $N=10,000$ and the hash function $h(k)=$ last four digits of k

HASH FUNCTIONS

- A hash function is usually specified as the composition of two functions:
- Hash code:

$$
h_{1}: \text { keys } \rightarrow \text { integers }
$$

- Compression function:

$$
h_{2} \text { : integers } \rightarrow[0, N-1]
$$

- The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$
h(k)=h_{2}\left(h_{1}(k)\right)
$$

- The goal of the hash function is to "disperse" the keys in an apparently random way

HASH CODES

- Memory address:
- We reinterpret the memory address of the key object as an integer
- Good in general, except for numeric and string keys
- Integer cast:
- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in C++)

- Component sum:

- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in C++)

HASH CODES

- Polynomial accumulation:
- We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)

$$
a_{0} a_{1} \ldots a_{n-1}
$$

- We evaluate the polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}$ at a fixed value z, ignoring overflows
- Especially suitable for strings (e.g., the choice $z=33$ gives at most 6 collisions on a set of 50,000 English words)

- Cyclic Shift:

- Like polynomial accumulation except use bit shifts instead of multiplications and bitwise or instead of addition
- Can be used on floating point numbers as well by converting the number to an array of characters

COMPRESSION FUNCTIONS

- Division:
- $h_{2}(k)=k \bmod N$
- The size N of the hash table is usually chosen to be a prime
- The reason has to do with number theory and is beyond the scope of this course
- Multiply, Add and Divide (MAD):
- $h_{2}(k)=(a k+b) \bmod N$
- a and b are nonnegative integers such that

$$
a \bmod N \neq 0
$$

- Otherwise, every integer would map to the same value b

COLLISION RESOLUTION WITH SEPARATE CHAINING

- Collisions occur when different elements are mapped to the same cell
- Separate Chaining: let each cell in the table point to a linked list of entries that map there
- Chaining is simple, but requires additional memory outside the table

EXERCISE SEPARATE CHAINING

- Assume you have a hash table H with $N=9$ slots $(A[0-8])$ and let the hash function be $h(k)=k \bmod N$
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by chaining
- $5,28,19,15,20,33,12,17,10$

COLLISION RESOLUTION WITH OPEN ADDRESSING - LINEAR PROBING

- In Open addressing the colliding item is placed in a different cell of the table
- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell. So the i th cell checked is: $h(k, i)=|h(k)+i| \bmod N$
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer probe sequence
- Example:
- $h(k)=k \bmod 13$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

		41			18	44	59	32	22	31	73	
0	1	2	3	4	5	6	7	8	9	10	11	12

SEARCH WITH LINEAR PROBING

- Consider a hash table A that uses linear probing
- get (k)
- We start at cell $h(k)$
- We probe consecutive locations until one of the following occurs
- An item with key k is found, or
- An empty cell is found, or
- N cells have been unsuccessfully probed

```
Algorithm get(k)
1. }i\leftarrowh(k
2. }p\leftarrow
3. repeat
4. }c\leftarrowA[i
5. if c\not=\emptyset
. return null
7. else if c.key()=k
8.
                return c
9. else
10. }i\leftarrow(i+1)\operatorname{mod}
11. }\quadp\leftarrowp+
12. until }p=
13. return null
```


UPDATES WITH LINEAR PROBING

- To handle insertions and deletions, we introduce a special object, called DEFUNCT, which replaces deleted elements
- remove (k)
- We search for an item with key k
- If such an item (k, v) is found, we replace it with the special item DEFUNCT
- Else, we return null
- put (k, V)
- We start at cell $h(k)$
- We probe consecutive cells until one of the following occurs
- A cell i is found that is either empty or stores DEFUNCT, or
- N cells have been unsuccessfully probed

EXERCISE
 OPEN ADDRESSING - LINEAR PROBING

- Assume you have a hash table H with $N=11$ slots ($A[0-10]$) and let the hash function be $h(k)=k \bmod N$
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by linear probing.
- $10,22,31,4,15,28,17,88,59$

COLLISION RESOLUTION WITH OPEN ADDRESSING - QUADRATIC PROBING

- Linear probing has an issue with clustering
- Another strategy called quadratic probing uses a hash function

$$
h(k, i)=\left(h(k)+i^{2}\right) \bmod N
$$

$$
\text { for } i=0,1, \ldots, N-1
$$

- This can still cause secondary clustering

COLLISION RESOLUTION WITH OPEN ADDRESSING - DOUBLE HASHING

- Double hashing uses a secondary hash function $h_{2}(k)$ and handles collisions by placing an item in the first available cell of the series

$$
h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod N
$$

$$
\text { for } i=0,1, \ldots, N-1
$$

- The secondary hash function $h_{2}(k)$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells
- Common choice of compression map for the secondary hash function:

$$
h_{2}(k)=q-(k \bmod q)
$$

where

- $q<N$
- q is a prime
- The possible values for $h_{2}(k)$ are $1,2, \ldots, q$

PERFORMANCE OF HASHING

- In the worst case, searches, insertions and removals on a hash table take $O(n)$ time
- The worst case occurs when all the keys inserted into the map collide
- The load factor $\alpha=\frac{n}{N}$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is

$$
\frac{1}{1-\alpha}=\frac{1}{1-n / N}=\frac{1}{N-n / N}=\frac{N}{N-n}
$$

- The expected running time of all the Map ADT operations in a hash table is $O(1)$
- In practice, hashing is very fast provided the load factor is not close to 100%
- Applications of hash tables
- Small databases
- Compilers
- Browser caches

UNIFORM HASHING ASSUMPTION

- The probe sequence of a key k is the sequence of slots probed when looking for k
- In open addressing, the probe sequence is $h(k, 0), h(k, 1), \ldots, h(k, N-1)$
- Uniform Hashing Assumption
- Each key is equally likely to have any one of the N ! permutations of $\{0,1, \ldots, N-1\}$ as is probe sequence
- Note: Linear probing and double hashing are far from achieving Uniform Hashing
- Linear probing: N distinct probe sequences
- Double Hashing: N^{2} distinct probe sequences

PERFORMANCE OF UNIFORM HASHING

- Theorem: Assuming uniform hashing and an open-address hash table with load factor $\alpha=\frac{n}{N}<1$, the expected number of probes in an unsuccessful search is at most $\frac{1}{1-\alpha}$.
- Exercise: compute the expected number of probes in an unsuccessful search in an open address hash table with $\alpha=\frac{1}{2}, \alpha=\frac{3}{4^{\prime}}$ and $\alpha=\frac{99}{100}$.

ON REHASHING

- Keeping the load factor low is vital for performance
- When resizing the table:
- Reallocate space for the array (of size that is a prime)
- Design a new hash function (new parameters) for the new array size (practically, change the mod)
- For each item you reinsert into the table rehash

SUMMARY MAPS (SO FAR)

	put (k, v)	get (k)	Space
Unsorted list	$O(n)$	$O(n)$	$O(n)$
Direct Address Table	$O(1)$	$O(1)$	$O(N)$
Sorted Search Table (Naturally supported Sorted Map)	$O(n)$	$O(\log n)$	$O(n)$
Hashing (chaining)	$O\left(\frac{n}{N}\right)$	$O\left(\frac{n}{N}\right)$	$O(n+N)$
Hashing (open addressing)	$O\left(\frac{1}{1-\frac{n}{N}}\right)$	$O\left(\frac{1}{1-\frac{n}{N}}\right)$	$O(N)$

SKIP LISTS

RANDOMIZED ALGORITHMS

- A randomized algorithm controls its execution through random selection (e.g., coin tosses)
- It contains statements like:
$b \leftarrow$ randomBit()
if $b=0$
do something...
else $/ / b=1$
do something else...
- Its running time depends on the outcomes of the "coin tosses"
- Through probabilistic analysis we can derive the expected running time of a randomized algorithm
- We make the following assumptions in the analysis:
- the coins are unbiased
- the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list to insert in expected $O(\log n)$-time
- When randomization is used in data structures they are referred to as probabilistic data structures

WHAT IS A SKIP LIST?

- A skip list for a set S of distinct (key, element) items is a series of lists

$$
S_{0}, S_{1}, \ldots, S_{h}
$$

- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List S_{0} contains the keys of S in non-decreasing order
- Each list is a subsequence of the previous one, i.e.,

$$
S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{h}
$$

- List S_{h} contains only the two special keys
- Skip lists are one way to implement the Ordered Map ADT
-

IMPLEMENTATION

- We can implement a skip list with quadnodes
- A quad-node stores:
- (Key, Value)
- links to the nodes before, after, below, and above
- Also, we define special keys $+\infty$ and $-\infty$, and we modify the key comparator to handle them

SEARCH - GET (K)

- We search for a key k in a skip list as follows:
- We start at the first position of the top list
- At the current position p, we compare k with $y \leftarrow p$. next(). $\operatorname{key}()$ $x=y$: we return p.next(). value()
$x>y$: we scan forward
$x<y$: we drop down
- If we try to drop down past the bottom list, we return null
- Example: search for 78

EXERCISE SEARCH

- We search for a key k in a skip list as follows:
- We start at the first position of the top list
- At the current position p, we compare k with $y \leftarrow p$.next(). $\operatorname{key}()$
$x=y$: we return p.next(). value()
$x>y$: we scan forward
$x<y$: we drop down
- If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Ex 1: search for 64: list the (S_{i}, node) pairs visited and the return value
- Ex 2: search for 27: list the (S_{i}, node) pairs visited and the return value

INSERTION - PUT (K, V)

- To insert an item (k, v) into a skip list, we use a randomized algorithm:
- We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
- If $i \geq h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1} each containing only the two special keys
- We search for k in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than k in each list $S_{0}, S_{1}, \ldots, S_{i}$
- For $i \leftarrow 0, \ldots, i$, we insert item (k, v) into list S_{i} after position p_{i}
- Example: insert key 15 , with $i=2$

DELETION - REMOVE (K)

- To remove an item with key k from a skip list, we proceed as follows:
- We search for k in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with key k, where position p_{i} is in list S_{i}
- We remove positions $p_{0}, p_{1}, \ldots, p_{i}$ from the lists $S_{0}, S_{1}, \ldots, S_{i}$
- We remove all but one list containing only the two special keys
- Example: remove key 34

$S_{2}-\infty$

$S_{0}-\infty-12-23-45-+\infty$

SPACE USAGE

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
- Fact 1: The probability of getting i consecutive heads when flipping a coin is $\frac{1}{2^{i}}$
- Fact 2: If each of n items is present in a set with probability p, the expected size of the set is $n p$
- Consider a skip list with n items
- By Fact 1 , we insert an item in list S_{i} with probability $\frac{1}{2^{i}}$
- By Fact 2, the expected size of list S_{i} is $\frac{n}{2^{i}}$
- The expected number of nodes used by the skip list is

$$
\sum_{i=0}^{h} \frac{n}{2^{i}}=n \sum_{i=0}^{h} \frac{1}{2^{i}}<2 n
$$

- Thus the expected space is $O(2 n)$

HEIGHT

- The running time of find $(k), \operatorname{put}(k, v)$, and erase (k) operations are affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height $O(\log n)$
- We use the following additional probabilistic fact:
- Fact 3 : If each of n events has probability p, the probability that at least one event occurs is at most $n p$
- Consider a skip list with n items
- By Fact 1 , we insert an item in list S_{i} with probability $\frac{1}{2^{i}}$
- By Fact 3, the probability that list S_{i} has at least one item is at most $\frac{n}{2^{i}}$
- By picking $i=3 \log n$, we have that the probability that $S_{3} \log n$ has at least one item is
at most $\frac{n}{2^{3 \log n}}=\frac{n}{n^{3}}=\frac{1}{n^{2}}$
- Thus a skip list with n items has height at most $3 \log n$ with probability at least $1-\frac{1}{n^{2}}$

SEARCH AND UPDATE TIMES

- The search time in a skip list is proportional to
- the number of drop-down steps
- the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ expected time
- To analyze the scan-forward steps, we use yet another probabilistic fact:
- Fact 4: The expected number of coin tosses required in order to get tails is 2
- When we scan forward in a list, the destination key does not belong to a higher list
- A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scan-forward steps is $O(\log n)$
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results

EXERCISE

- You are working for ObscureDictionaries.com a new online start-up which specializes in sci-fi languages. The CEO wants your team to describe a data structure which will efficiently allow for searching, inserting, and deleting new entries. You believe a skip list is a good idea, but need to convince the CEO. Perform the following:
- Illustrate insertion of "X-wing" into this skip list. Randomly generated (1, 1, 1, 0).
- Illustrate deletion of an incorrect entry "Enterprise"
- Argue the complexity of deleting from a skip list

SUMMARY

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with n items
- The expected space used is $O(n)$
- The expected search, insertion and deletion time is $O(\log n)$
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice

