

CHAPTER 10 MAPS, HASH TABLES, AND SKIP LISTS

0

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

• A map models a searchable collection of key-value entries

- The main operations of a map are for searching, inserting, and deleting items
- Multiple entries with the same key are not allowed
- Applications:

MAPS

6

- address book
- student-record database
- Often called associative containers

THE MAP ADT

Q

- get (k): if the map M has an entry with key k, return its associated value; else, return null
- put (k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- remove (k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- size(), isEmpty()
- $\operatorname{entrySet}()$: return an iterable collection of the entries in M
- keySet (): return an iterable collection of the keys in M
- values (): return an iterator of the values in M

EXAMPLE

6

Ŏ

0

69

 \mathbf{Q}

Q

Q

•	Operation	Output
•	isEmpty()	true
•	put(5,A)	null
•	put(7,B)	null
•	put(2,C)	null
•	put(8,D)	null
•	put(2,E)	С
•	get(7)	B
•	get(4)	null
•	get(2)	E
•	size()	4
	remove(5)	A
•	remove(2)	E
0	get(2)	null
•	isEmpty()	false

Мар			
Ø			
(5,A)			
(5, A),	(7 , B)		
(5,A),	(7,B),	(2,C)	
(5,A),	(7,B),	(2, C),	(8,I
(5,A),	(7,B),	(2, E),	(8,I
(5, A),	(7,B),	(2, E),	(8,I
(5, A),	(7,B),	(2, E),	(8,I
(5, A),	(7,B),	(2, E),	(8,I
(5, A),	(7,B),	(2, E),	(8,I
(7,B),	(2, E),	(8,D)	
(7,B),	(8,D)		
(7,B),	(8,D)		
(7,B),	(8,D)		

Ø

LIST-BASED MAP

O

 \bigcirc

O

6

- We can implement a map with an unsorted list
 - Store the entries in arbitrary order
- Complexity of get, put, remove?
 - O(n) on put, get, and remove

DIRECT ADDRESS TABLE MAP IMPLEMENTATION

- A direct address table is a map in which
 - The keys are in the range [0, N]
 - Stored in an array T of size N
 - Entry with key k stored in T[k]
- Performance:

- put(k, v), get(k), and remove(k) all take O(1) time
- Space requires space O(N), independent of n, the number of entries stored in the map
- The direct address table is not space efficient unless the range of the keys is close to the number of elements to be stored in the map, i.e., unless n is close to N.

SORTED MAP

- A Sorted Map supports the usual map operations, but also maintains an order relation for the keys.
- Naturally supports
 - Sorted search tables store dictionary in an array by non-decreasing order of the keys
 - Utilizes binary search

- Sorted Map ADT adds the following functionality to a map
 - firstEntry(), lastEntry() return iterators to entries with the smallest and largest keys, respectively
 - ceilingEntry(k), floorEntry(k) – return an iterator to the least/greatest key value greater than/less than or equal to k
 - lowerEntry(k), higherEntry(k) – return an iterator to the greatest/least key value less than/greater than k
 - etc

EXAMPLE OF ORDERED MAP: BINARY SEARCH

- Binary search performs operation get (k) on an ordered search table
 - similar to the high-low game
 - at each step, the number of candidate items is halved
 - terminates after a logarithmic number of steps
- Example get(7)

D

SIMPLE MAP IMPLEMENTATION SUMMARY

	<pre>put(k, v)</pre>	get(k)	Space
Unsorted list	<i>O</i> (<i>n</i>)	0(n)	0(n)
Direct Address Table	0(1)	0(1)	O(N)
Sorted Search Table (Naturally supported Sorted Map)	0(n)	0(log n)	0(n)

Q

 \bigcirc

O

6

6

 \bigcirc

Ó

 \bigcap

DEFINITIONS

Q

- A set is an unordered collection of elements, without duplicates that typically supports efficient membership tests.
 - Elements of a set are like keys of a map, but without any auxiliary values.
- A multiset (also known as a bag) is a set-like container that allows duplicates.
- A multimap (also known as a dictionary) is similar to a traditional map, in that it associates values with keys; however, in a multimap the same key can be mapped to multiple values.
 - For example, the index of a book maps a given term to one or more locations at which the term occurs.

SET ADT

add(e): Adds the element e to S (if not already present).
remove(e): Removes the element e from S (if it is present).
contains(e): Returns whether e is an element of S.
iterator(): Returns an iterator of the elements of S.

There is also support for the traditional mathematical set operations of *union*, *intersection*, and *subtraction* of two sets *S* and *T*:

 $S \cup T = \{e: e \text{ is in } S \text{ or } e \text{ is in } T\},\$ $S \cap T = \{e: e \text{ is in } S \text{ and } e \text{ is in } T\},\$ $S - T = \{e: e \text{ is in } S \text{ and } e \text{ is not in } T\}.\$

- addAll(T): Updates S to also include all elements of set T, effectively replacing S by $S \cup T$.
- retainAll(*T*): Updates *S* so that it only keeps those elements that are also elements of set *T*, effectively replacing *S* by $S \cap T$.
- removeAll(T): Updates S by removing any of its elements that also occur in set T, effectively replacing S by S T.

GENERIC MERGING

- Generalized merge of two sorted lists A and B
- Template method genericMerge
- Auxiliary methods

Q

- alsLess
- bIsLess
- bothAreEqual
- Runs in $O(n_A + n_B)$ time provided the auxiliary methods run in O(1) time

Algorithm genericMerge(A, B) Input: Sets A, B as sorted lists **Output:** Set S 1. $S \leftarrow \emptyset$ **2.** while $\neg A$.isEmpty() $\land \neg B$.isEmpty() do 3. $a \leftarrow A.first(); b \leftarrow B.first()$ 4. if a < b5. 6. A.removeFirst(); 7. else if b < a8. 9. B.removeFirst() 10. else //a = b11. bothAreEqual(a, b, S) //generic action 12. A.removeFirst(); B.removeFirst() **13.while** ¬*A*.isEmpty() **do** 14. alsLess(A.first(), S); A.eraseFront() **15.while** $\neg B$.isEmpty() **do** 16. blsLess(B.first(), S); B.removeFirst() **17.**return S

USING GENERIC MERGE FOR SET OPERATIONS

- Any of the set operations can be implemented using a generic merge
- For example:

- For intersection: only copy elements that are duplicated in both list
- For union: copy every element from both lists except for the duplicates
- All methods run in linear time

MULTIMAP

ဝ

 \bigcirc

- A multimap is similar to a map, except that it can store multiple entries with the same key
- We can implement a multimap M by means of a map M'
 - For every key k in M, let E(k) be the list of entries of M with key k
 - The entries of M' are the pairs (k, E(k))

MULITMAPS

- get(k): Returns a collection of all values associated with key k in the multimap.
- put(k, v): Adds a new entry to the multimap associating key k with value v, without overwriting any existing mappings for key k.
- remove(k, v): Removes an entry mapping key k to value v from the multimap (if one exists).
- removeAll(k): Removes all entries having key equal to k from the multimap.
 - size(): Returns the number of entries of the multiset
 (including multiple associations).
 - entries(): Returns a collection of all entries in the multimap.
 - keys(): Returns a collection of keys for all entries in the multimap (including duplicates for keys with multiple bindings).
 - keySet(): Returns a nonduplicative collection of keys in the multimap.
 - values(): Returns a collection of values for all entries in the multimap.

 \bigcirc

 \bigcirc

HASH TABLES

Ø

INTUITIVE NOTION OF A MAP

- Intuitively, a map M supports the abstraction of using keys as indices with a syntax such as M[k].
- As a mental warm-up, consider a restricted setting in which a map with n items uses keys that are known to be integers in a range from 0 to N 1, for some $N \ge n$.

MORE GENERAL KINDS OF KEYS

 \bigcirc

Q

- But what should we do if our keys are not integers in the range from 0 to N-1?
 - Use a hash function to map general keys to corresponding indices in a table.
 - For instance, the last four digits of a Social Security number.

HASH TABLES

O

6

- A Hash function $h(k) \rightarrow [0, N-1]$
 - The integer h(k) is referred to as the hash value of key k
 - Example $h(k) = k \mod N$ could be a hash function for integers
- Hash tables consist of
 - A hash function h
 - Array A of size N (either to an element itself or to a "bucket")
- Goal is to store elements (k, v) at index i = h(k)

ISSUES WITH HASH TABLES

• Issues

O

6

 \bigcirc

- Collisions some keys will map to the same index of H (otherwise we have a Direct Address Table).
 - Chaining put values that hash to same location in a linked list (or a "bucket")
 - Open addressing if a collision occurs, have a method to select another location in the table.
- Load factor
- Rehashing

EXAMPLE

D

 \bigcirc

 \bigcirc

6

- We design a hash table for a Map storing items (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function h(k) =last four digits of k

HASH FUNCTIONS

- A hash function is usually specified as the composition of two functions:
- Hash code: h_1 : keys \rightarrow integers

Q

• Compression function: h_2 : integers $\rightarrow [0, N-1]$

- The hash code is applied first, and the compression function is applied next on the result, i.e., $h(k) = h_2(h_1(k))$
- The goal of the hash function is to "disperse" the keys in an apparently random way

HASH CODES

Memory address:

Q

- We reinterpret the memory address of the key object as an integer
- Good in general, except for numeric and string keys

Integer cast:

- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in C++)

Component sum:

- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in C++)

HASH CODES

Q

Polynomial accumulation:

We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)

 $a_0a_1\dots a_{n-1}$

- We evaluate the polynomial $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1}$ at a fixed value z, ignoring overflows
- Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words)

• Cyclic Shift:

- Like polynomial accumulation except use bit shifts instead of multiplications and bitwise or instead of addition
- Can be used on floating point numbers as well by converting the number to an array of characters

COMPRESSION FUNCTIONS

- **Division:**
 - $h_2(k) = k \mod N$
 - The size N of the hash table is usually chosen to be a prime
 - The reason has to do with number theory and is beyond the scope of this course

- Multiply, Add and Divide (MAD):
 - $h_2(k) = (ak + b) \mod N$
 - a and b are nonnegative integers such that

 $a \mod N \neq 0$

• Otherwise, every integer would map to the same value *b*

COLLISION RESOLUTION WITH SEPARATE CHAINING

 Collisions occur when different elements are mapped to the same cell

O

Q

 Separate Chaining: let each cell in the table point to a linked list of entries that map there

• Chaining is simple, but requires additional memory outside the table

EXERCISE SEPARATE CHAINING

Q

 \bigcirc

 \bigcirc

- Assume you have a hash table H with N = 9 slots (A[0 8]) and let the hash function be $h(k) = k \mod N$
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by chaining

• 5, 28, 19, 15, 20, 33, 12, 17, 10

COLLISION RESOLUTION WITH OPEN ADDRESSING - LINEAR PROBING

 In Open addressing the colliding item is placed in a different cell of the table

- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell. So the *i*th cell checked is: $h(k,i) = |h(k) + i| \mod N$
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer probe sequence

- Example:
 - $h(k) = k \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

SEARCH WITH LINEAR PROBING

- Consider a hash table A that uses linear probing
- get(k)
 - We start at cell h(k)
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

Algorithm get(k) 1. $i \leftarrow h(k)$ 2. $p \leftarrow 0$ 3. repeat $c \leftarrow A[i]$ 4. 5. if $c \neq \emptyset$ 6. return null 7. else if $c \cdot key() = k$ 8. return c 9. else 10. $i \leftarrow (i+1) \mod N$ 11. $p \leftarrow p + 1$ **12.** until p = N13. return null

UPDATES WITH LINEAR PROBING

 To handle insertions and deletions, we introduce a special object, called DEFUNCT, which replaces deleted elements

remove(k)

Q

- We search for an item with key k
- If such an item (k, v) is found, we replace it with the special item DEFUNCT
- Else, we return null

put(k, v)

- We start at cell h(k)
- We probe consecutive cells until one of the following occurs
 - A cell *i* is found that is either empty or stores DEFUNCT, or
 - *N* cells have been unsuccessfully probed

EXERCISE OPEN ADDRESSING – LINEAR PROBING

- Assume you have a hash table H with N = 11 slots (A[0 10]) and let the hash function be $h(k) = k \mod N$
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by linear probing.

• 10, 22, 31, 4, 15, 28, 17, 88, 59

COLLISION RESOLUTION WITH OPEN ADDRESSING – QUADRATIC PROBING

Linear probing has an issue with clustering

• Another strategy called quadratic probing uses a hash function $h(k,i) = (h(k) + i^2) \mod N$

for i = 0, 1, ..., N - 1

• This can still cause secondary clustering

COLLISION RESOLUTION WITH OPEN ADDRESSING - DOUBLE HASHING

• Double hashing uses a secondary hash function $h_2(k)$ and handles collisions by placing an item in the first available cell of the series

 $h(k,i) = (h_1(k) + ih_2(k)) \mod N$ for i = 0, 1, ..., N - 1

- The secondary hash function $h_2(k)$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells

• Common choice of compression map for the secondary hash function: $h_2(k) = q - (k \mod q)$

where

- q < N
- q is a prime
- The possible values for $h_2(k)$ are 1, 2, ..., q

PERFORMANCE OF HASHING

• In the worst case, searches, insertions and removals on a hash table take O(n) time

- The worst case occurs when all the keys inserted into the map collide
- The load factor $\alpha = \frac{n}{N}$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is

$$\frac{1}{1-\alpha} = \frac{1}{1-n/N} = \frac{1}{N-n/N} = \frac{N}{N-n/N}$$

- The expected running time of all the Map ADT operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%
- Applications of hash tables
 - Small databases
 - Compilers
 - Browser caches

UNIFORM HASHING ASSUMPTION

- The probe sequence of a key k is the sequence of slots probed when looking for k
 - In open addressing, the probe sequence is h(k, 0), h(k, 1), ..., h(k, N-1)
- Uniform Hashing Assumption

Q

- Each key is equally likely to have any one of the N! permutations of $\{0, 1, ..., N-1\}$ as is probe sequence
- Note: Linear probing and double hashing are far from achieving Uniform Hashing
 - Linear probing: N distinct probe sequences
 - Double Hashing: N^2 distinct probe sequences

PERFORMANCE OF UNIFORM HASHING

Ó

- Theorem: Assuming uniform hashing and an open-address hash table with load factor $\alpha = \frac{n}{N} < 1$, the expected number of probes in an unsuccessful search is at most $\frac{1}{1-\alpha}$.
- Exercise: compute the expected number of probes in an unsuccessful search in an open address hash table with $\alpha = \frac{1}{2}$, $\alpha = \frac{3}{4}$, and $\alpha = \frac{99}{100}$.

ON REHASHING

Q

 \bigcirc

- Keeping the load factor low is vital for performance
- When resizing the table:
 - Reallocate space for the array (of size that is a prime)
 - Design a new hash function (new parameters) for the new array size (practically, change the mod)
 - For each item you reinsert into the table rehash

SUMMARY MAPS (SO FAR)

6

Ó

0

6

6

 \bigcirc

Ó

 \bigcirc

	put(k, v)	get(k)	Space
Unsorted list	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	0(n)
Direct Address Table	0(1)	0(1)	0(N)
Sorted Search Table (Naturally supported Sorted Map)	0(n)	$O(\log n)$	0(n)
Hashing (chaining)	$O\left(\frac{n}{N}\right)$	$O\left(\frac{n}{N}\right)$	$\overline{O(n+N)}$
Hashing (open addressing)	$O\left(\frac{1}{1-\frac{n}{N}}\right)$	$O\left(\frac{1}{1-\frac{n}{N}}\right)$	0(N)

 \bigcirc

Q

SKIP LISTS

Ø

 $\left<\right>$

RANDOMIZED ALGORITHMS

- A randomized algorithm controls its execution through random selection (e.g., coin tosses)
- It contains statements like:
 - $b \leftarrow randomBit()$
 - **if** b = 0

- do something...
- **else** //b = 1
 - do something else...
- Its running time depends on the outcomes of the "coin tosses"

- Through probabilistic analysis we can derive the expected running time of a randomized algorithm
- We make the following assumptions in the analysis:
 - the coins are unbiased
 - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list to insert in expected $O(\log n)$ -time
- When randomization is used in data structures they are referred to as probabilistic data structures

WHAT IS A SKIP LIST?

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \dots, S_h
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e.,

 $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$

- List S_h contains only the two special keys
- Skip lists are one way to implement the Ordered Map ADT
- <u>Java applet</u>

 \bigcirc

 \mathcal{O}

6

IMPLEMENTATION

- We can implement a skip list with quadnodes
- A quad-node stores:
 - (Key, Value)

Q

- links to the nodes before, after, below, and above
- Also, we define special keys $+\infty$ and $-\infty$, and we modify the key comparator to handle them

SEARCH - GET (K)

 \bigcirc

O

6

- We search for a key k in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p_i , we compare k with $y \leftarrow p$. next(). key() x = y: we return p. next(). value()

 - x > y: we scan forward
 - x < y: we drop down
 - If we try to drop down past the bottom list, we return *null*
- Example: search for 78

EXERCISE SEARCH

Q

- We search for a key k in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare k with y ← p. next(). key()
 x = y: we return p. next(). value()
 x > y: we scan forward
 x < y: we drop down
 - If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Ex 1: search for 64: list the $(S_i, node)$ pairs visited and the return value
- Ex 2: search for 27: list the $(S_i, node)$ pairs visited and the return value

INSERTION - PUT(K, V)

- To insert an item (k, v) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with *i* the number of times the coin came up heads
 - If $i \ge h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1} each containing only the two special keys
 - We search for k in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than k in each list $S_0, S_1, ..., S_i$
 - For $i \leftarrow 0, ..., i$, we insert item (k, v) into list S_i after position p_i
- Example: insert key 15, with i = 2

DELETION - REMOVE (K)

- To remove an item with key k from a skip list, we proceed as follows:
 - We search for k in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key k, where position p_i is in list S_i
 - We remove positions p_0, p_1, \dots, p_i from the lists S_0, S_1, \dots, S_i
 - We remove all but one list containing only the two special keys
- Example: remove key 34

 \bigcirc

 \bigcirc

0

Q

SPACE USAGE

Q

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting *i* consecutive heads when flipping a coin is $\frac{1}{2^{i}}$
 - Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np

- Consider a skip list with *n* items
 - By Fact 1, we insert an item in list S_i with probability $\frac{1}{2^i}$
 - By Fact 2, the expected size of list S_i is $\frac{n}{2^i}$
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

• Thus the expected space is O(2n)

HEIGHT

- The running time of find(k), put(k, v), and erase(k) operations are affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height $O(\log n)$
- We use the following additional probabilistic fact:
 - Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np

- Consider a skip list with *n* items
 - By Fact 1, we insert an item in list S_i with probability $\frac{1}{2^i}$
 - By Fact 3, the probability that list S_i has at least one item is at most $\frac{n}{2^i}$
- By picking $i = 3 \log n$, we have that the probability that $S_{3 \log n}$ has at least one item is

at most
$$\frac{n}{2^{3} \log n} = \frac{n}{n^{3}} = \frac{1}{n^{2}}$$

• Thus a skip list with n items has height at most $3 \log n$ with probability at least $1 - \frac{1}{n^2}$

SEARCH AND UPDATE TIMES

- The search time in a skip list is proportional to
 - the number of drop-down steps

- the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ expected time
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scan-forward steps is O(log n)
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results

EXERCISE

- You are working for ObscureDictionaries.com a new online start-up which specializes in sci-fi languages. The CEO wants your team to describe a data structure which will efficiently allow for searching, inserting, and deleting new entries. You believe a skip list is a good idea, but need to convince the CEO. Perform the following:
 - Illustrate insertion of "X-wing" into this skip list. Randomly generated (1, 1, 1, 0).
 - Illustrate deletion of an incorrect entry "Enterprise"
 - Argue the complexity of deleting from a skip list

SUMMARY

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with *n* items
 - The expected space used is O(n)
 - The expected search, insertion and deletion time is $O(\log n)$

- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice

 $\boldsymbol{\zeta}$