
JAVA PRIORITY QUEUE



SUMMARY OF CLASSES (PRIORITY QUEUE RELATED)

• PriorityQueue<E> - array-

based heap implementation of 

minimum priority queue

• Comparator<E> - can be useful 

for defining your own comparison 

between objects

• Others outside the scope of this 

course

• To find how to use them, go to the 

Java API!



Object

AbstractCollection<E>

AbstractQueue<E>

PriorityQueue<E>

Iterable<E>

Collection<E>

Queue<E>

Interfaces

Classes



EXAMPLE OF USING PRIORITYQUEUE<E>

1.Scanner s = new Scanner(new File(“numbers.txt”));

2.PriorityQueue<Integer> numbers = new PriorityQueue<>();

3.while(s.hasNextInt())

4. numbers.add(s.nextInt());

5.…elsewhere…

6.int sum = 0;

7.while(!numbers.isEmpty())

8. sum += numbers.poll(); //poll is removeMin()



DEFINING A COMPARATOR

• First method - No new class and simply override 

Object.compareTo(Object o) in any class

• Second – separate comparator class that implements Comparator<E>

interface

• Must define compare(E o1, E o2) and equals(Object o)

• Here equals is a comparison to another comparator



PROBLEM

• Event driven simulation – you want to estimate the profit for a coffee shop. There is an input 

file online stating the number of seats in the shop, the price per cup of coffee, and arrive 

events with a given time (integer) and number of partisans (integer) (1 pair per line)

• Use a priority queue of events, ordered by time to see how much profit the store will earn 

over this period. Rules:

• Arrive event - If a group enters and there are not enough seats they will leave. If they stay, an order 

event will be created at the current time + 1 + a random number below 4

• Order events - Every partisan of the group will buy 1 or 2 cups of coffee. Each orderEvent will also 

spawn a leaveEvent at the currentTime + 1 + a random number below 10.

• Leave event – When a group leaves, their chairs are opened up to another group

• Create an object oriented solution to this problem with your team. PLAN-IMPLEMENT-TEST!


