CH9. PRIORITY QUEUES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

- Stores a collection of elements each with an associated "key" value
 - Can insert as many elements in any order
 - Only can inspect and remove a single element the minimum (or maximum depending) element
- Applications
 - Standby Flyers
 - Auctions
 - Stock market

PRIORITY QUEUE ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - insert (k, v)inserts an entry with key k and value v
 - removeMin()
 removes and returns the entry with smallest
 key, or null if the the priority queue is empty

- Additional methods
 - min ()
 returns, but does not remove, an entry
 with smallest key, or null if the the
 priority queue is empty
 - size(), isEmpty()

TOTAL ORDER RELATION

- Keys in a priority queue can be arbitrary objects on which an order is defined, e.g., integers
- Two distinct items in a priority queue can have the same key

- Mathematical concept of total order relation \leq
 - Reflexive property:

$$k \le k$$

Antisymmetric property:

if
$$k_1 \le k_2$$
 and $k_2 \le k_1$, then $k_1 = k_2$

Transitive property:

if
$$k_1 \le k_2$$
 and $k_2 \le k_3$ then $k_1 \le k_3$

ENTRY ADT

- An entry in a priority queue is simply a key-value pair
- Priority queues store entries to allow for efficient insertion and removal based on keys
- Methods:
 - getKey: returns the key for this entry
 - getValue: returns the value associated with this entry

COMPARATOR ADT

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator

- Primary method of the Comparator ADT
- compare (x, y): returns an integer i such that
 - i < 0 if x < y,
 - i = 0 if x = y
 - i > 0 if x > y
 - An error occurs if a and b cannot be compared.

- We can use a priority queue to sort a set of comparable elements
- Insert the elements one by one with a series of insert(e) operations
- Remove the elements in sorted order with a series of removeMin() operations
- Running time depends on the PQ implementation

Algorithm PriorityQueueSort()

Input: List L storing n elements and a

Comparator $\mathcal C$

Output: Sorted List L

1 . Priority Queue P using comparator $\mathcal C$

2. while $\neg L.empty()$ do

 β . P.insert(L.front())

4. L.eraseFront()

5. while $\neg P.empty()$ do

6. L.insertBack(P.min())

7. P.removeMin()

8. return L

LIST-BASED PRIORITY QUEUE

Unsorted list implementation

 Store the items of the priority queue in a list, in arbitrary order

- Performance:
 - insert (e) takes O(1) time since we can insert the item at the beginning or end of the list
 - removeMin () and min () take O(n) time since we have to traverse the entire sequence to find the smallest key

Sorted list implementation

 Store the items of the priority queue in a list, sorted by key

- Performance:
 - insert (e) takes O(n) time since we have to find the place where to insert the item
 - removeMin() and min() take O(1) time since the smallest key is at the beginning of the list

8 5

SELECTION-SORT

 Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list

- Running time of Selection-sort:
 - Inserting the elements into the priority queue with n insert(e) operations takes O(n) time
 - Removing the elements in sorted order from the priority queue with n removeMin () operations takes time proportional to

$$\sum_{i=0}^{n} n - i = n + (n-1) + \dots + 2 + 1 = O(n^2)$$

• Selection-sort runs in $\mathcal{O}(n^2)$ time

EXERCISE SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list (do n insert (e) and then n removeMin())

- Illustrate the performance of selection-sort on the following input sequence:
 - (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

INSERTION-SORT

• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List

- Running time of Insertion-sort:
 - Inserting the elements into the priority queue with n insert (e) operations takes time proportional to

$$\sum_{i=0}^{n} i = 1 + 2 + \dots + n = O(n^2)$$

- Removing the elements in sorted order from the priority queue with a series of n removeMin() operations takes O(n) time
- Insertion-sort runs in $O(n^2)$ time

EXERCISE INSERTION-SORT

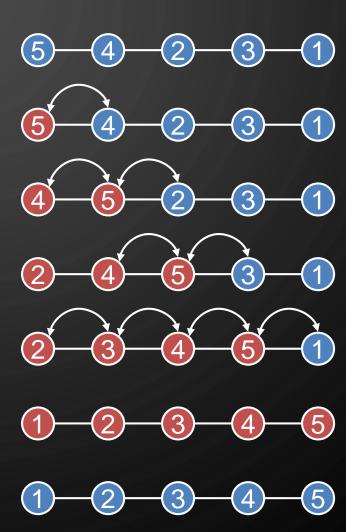
• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list (do n insert (e) and then n removeMin())

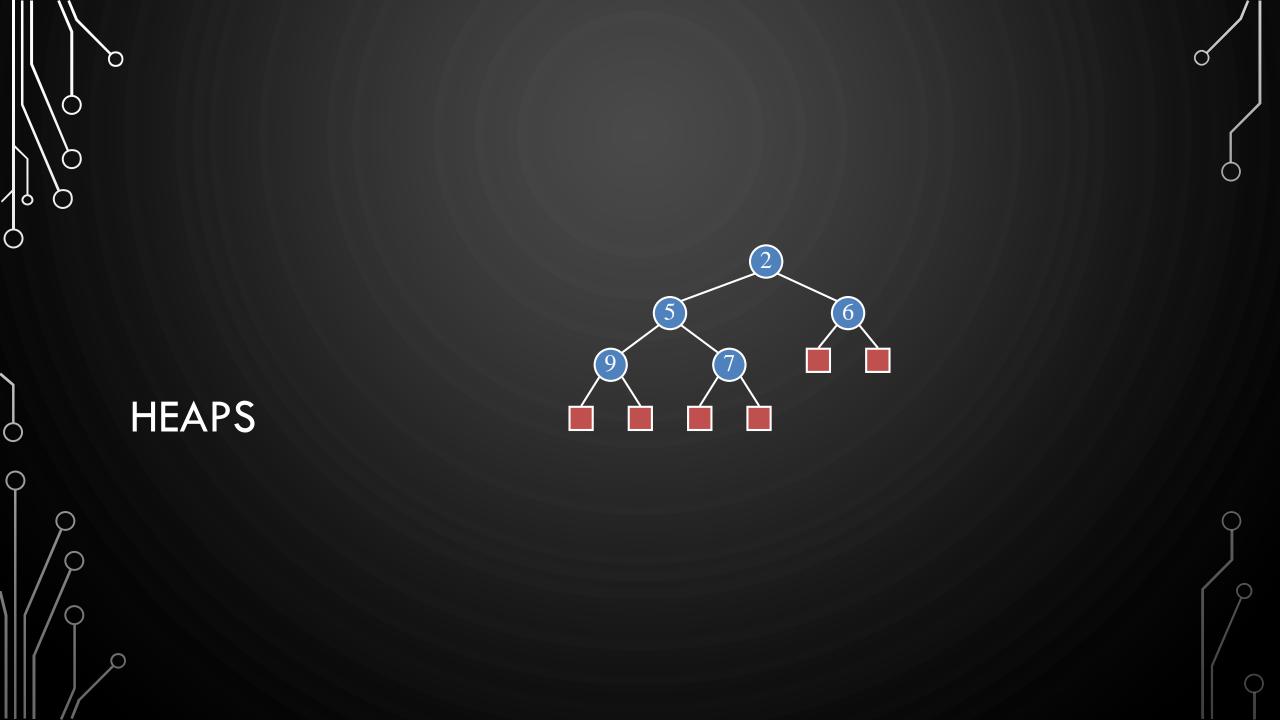
1 2 3 4 5

- Illustrate the performance of insertion-sort on the following input sequence:
 - (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

IN-PLACE INSERTION-SORT

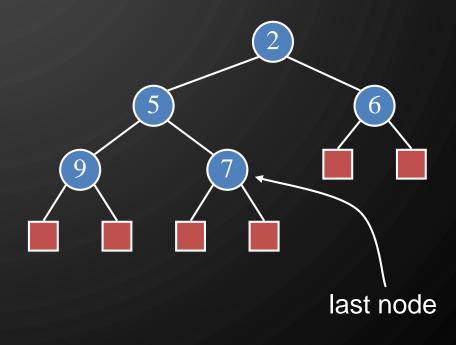
- Instead of using an external data structure, we can implement selectionsort and insertion-sort in-place (only O(1) extra storage)
- A portion of the input list itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the list
 - We can use swap(i, j) instead of modifying the list





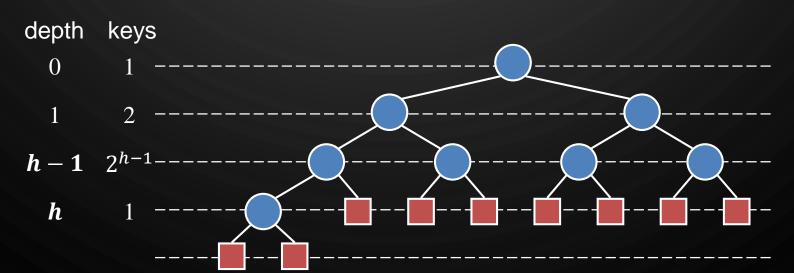
WHAT IS A HEAP?

- A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - Heap-Order: for every node v other than the root, $key(v) \ge key(v.parent())$
 - Complete Binary Tree: let h be the height of the heap
 - for $i = 0 \dots h 1$, there are 2^i nodes on level i
 - at level h-1, nodes are filled from left to right
- Can be used to store a priority queue efficiently



HEIGHT OF A HEAP

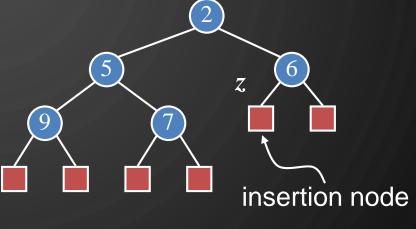
- Theorem: A heap storing n keys has height $O(\log n)$
- Proof: (we apply the complete binary tree property)
 - ullet Let h be the height of a heap storing h keys
 - Since there are 2^i keys at level i=0 ... h-1 and at least one key on level h, we have $n\geq 1+2+4+\cdots+2^{h-1}+1=\left(2^h-1\right)+1=2^h$
 - Level h has at most 2^h nodes: $n \le 2^{h+1} 1$
 - Thus, $\log(n+1) 1 \le h \le \log n$

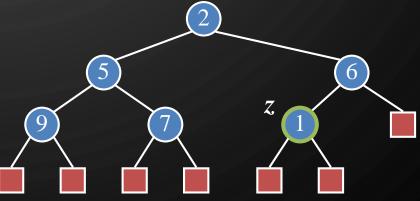


EXERCISE HEAPS

• Let *H* be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible that a preorder traversal visits the elements in sorted order? What about an inorder traversal or a postorder traversal? In each case, either show such a heap or prove that none exists.

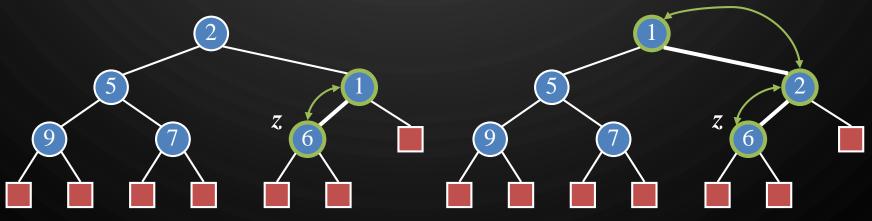
- insert (e) consists of three steps
 - Find the insertion node Z (the new last node)
 - Store e at z and expand z into an internal node
 - Restore the heap-order property (discussed next)





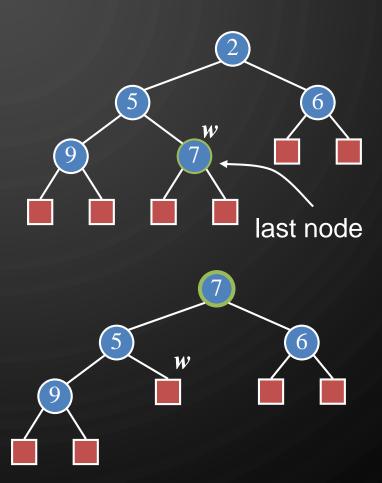
UPHEAP

- ullet After the insertion of a new element e, the heap-order property may be violated
- ullet **Up-heap bubbling** restores the heap-order property by swapping e along an upward path from the insertion node
- Upheap terminates when e reaches the root or a node whose parent has a key smaller than or equal to $\ker(e)$
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time



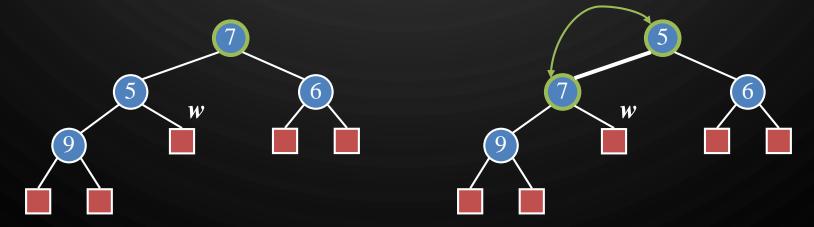
REMOVAL FROM A HEAP

- removeMin () corresponds to the removal of the root from the heap
- The removal algorithm consists of three steps
 - Replace the root with the element of the last node w
 - \bullet Compress W and its children into a leaf
 - Restore the heap-order property (discussed next)



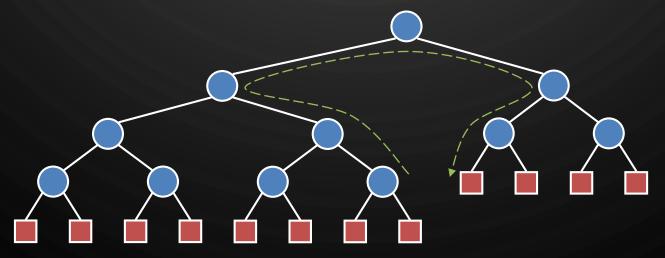
DOWNHEAP

- After replacing the root element of the last node, the heap-order property may be violated
- ullet Down-heap bubbling restores the heap-order property by swapping element e along a downward path from the root
- ullet Downheap terminates when e reaches a leaf or a node whose children have keys greater than or equal to $\ker(e)$
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

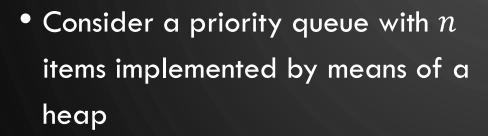


UPDATING THE LAST NODE

- The insertion node can be found by traversing a path of O(log n) nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal



HEAP-SORT



- the space used is O(n)
- insert(e) and removeMin() take $O(\log n)$ time
- min(), size(), and empty()take O(1) time

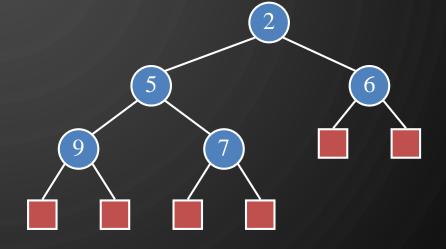
- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

EXERCISE HEAP-SORT

- Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap (do n insert (e) and then n removeMin())
- Illustrate the performance of heap-sort on the following input sequence (draw the heap at each step):
 - (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

ARRAY-BASED HEAP IMPLEMENTATION

- We can represent a heap with n elements by means of a vector of length n
 - Links between nodes are not explicitly stored
 - The leaves are not represented
 - The cell at index 0 is not used
- ullet For the node at index i
 - the left child is at index 2i + 1
 - the right child is at index 2i + 2
- insert (e) corresponds to inserting at index n+1
- removeMin() corresponds to removing element at index n
- Yields in-place heap-sort



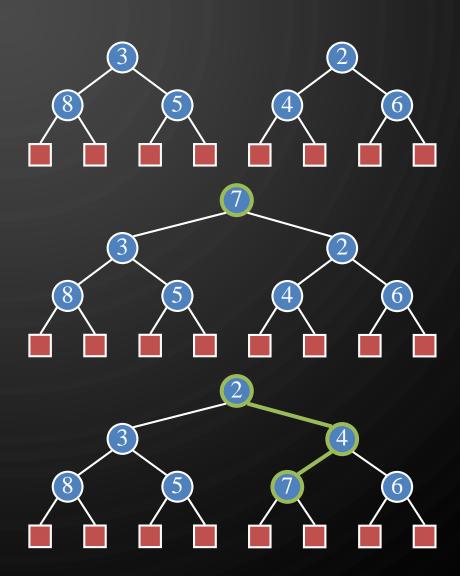
2	5	6	9	7
0	1	2	3	4

PRIORITY QUEUE SUMMARY

	insert(e)	removeMin()	PQ-Sort total
Ordered List (Insertion Sort)	O(n)	0(1)	$O(n^2)$
Unordered List (Selection Sort)	0(1)	O(n)	$O(n^2)$
Binary Heap, Vector-based Heap (Heap Sort)	$O(\log n)$	$O(\log n)$	$O(n\log n)$

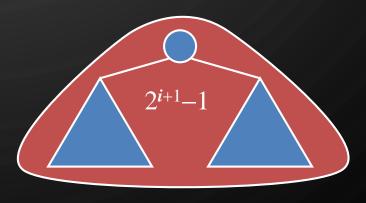
MERGING TWO HEAPS

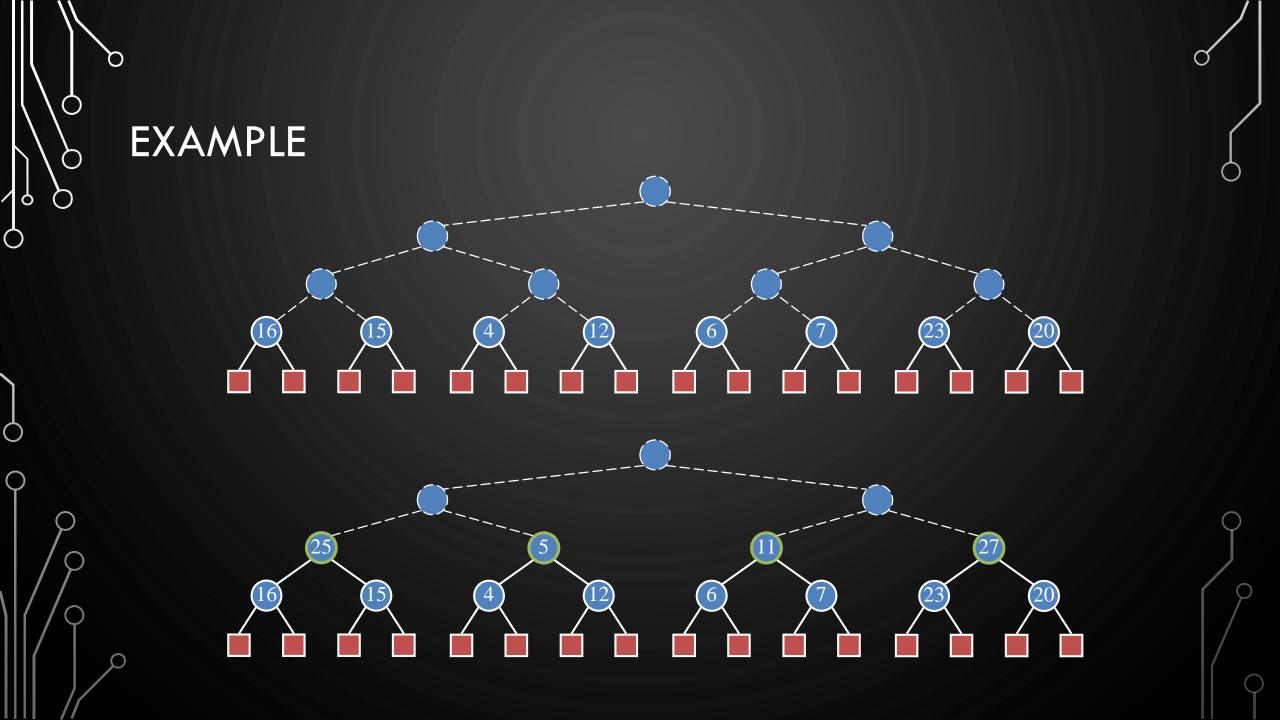
- We are given two two heaps and a new element e
- We create a new heap with a root node storing e and with the two heaps as subtrees
- We perform downheap to restore the heap-order property

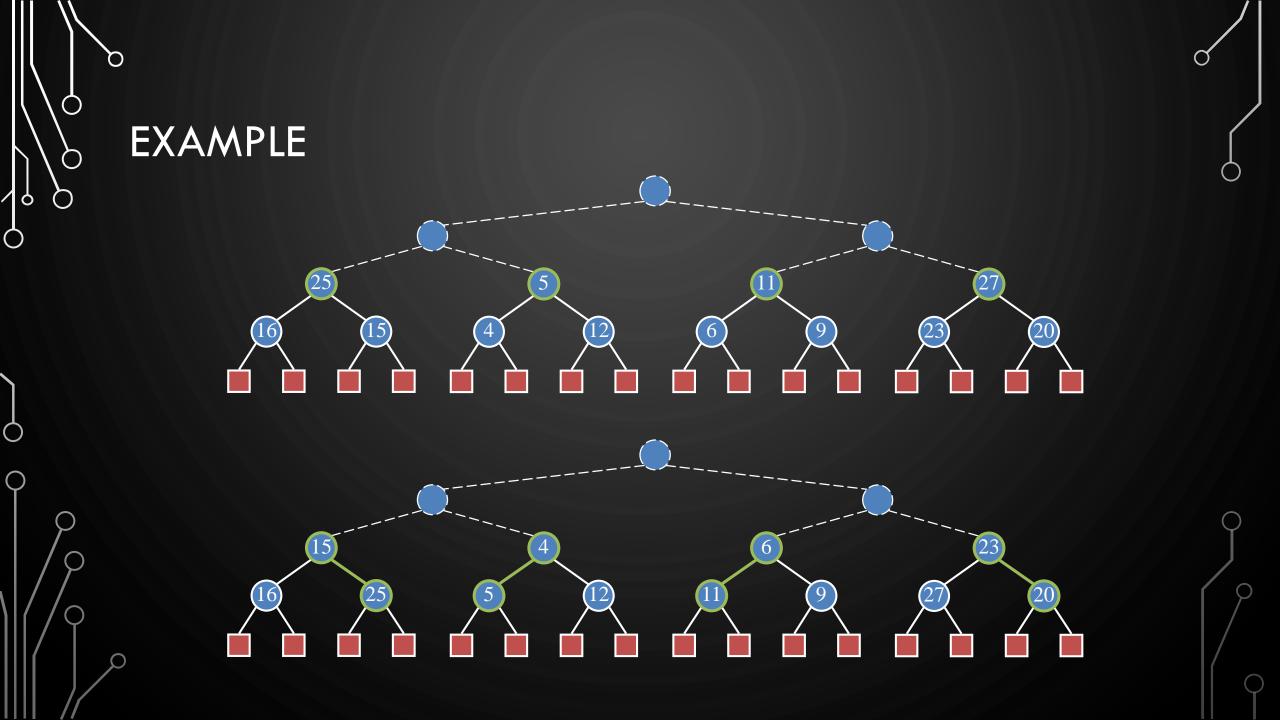


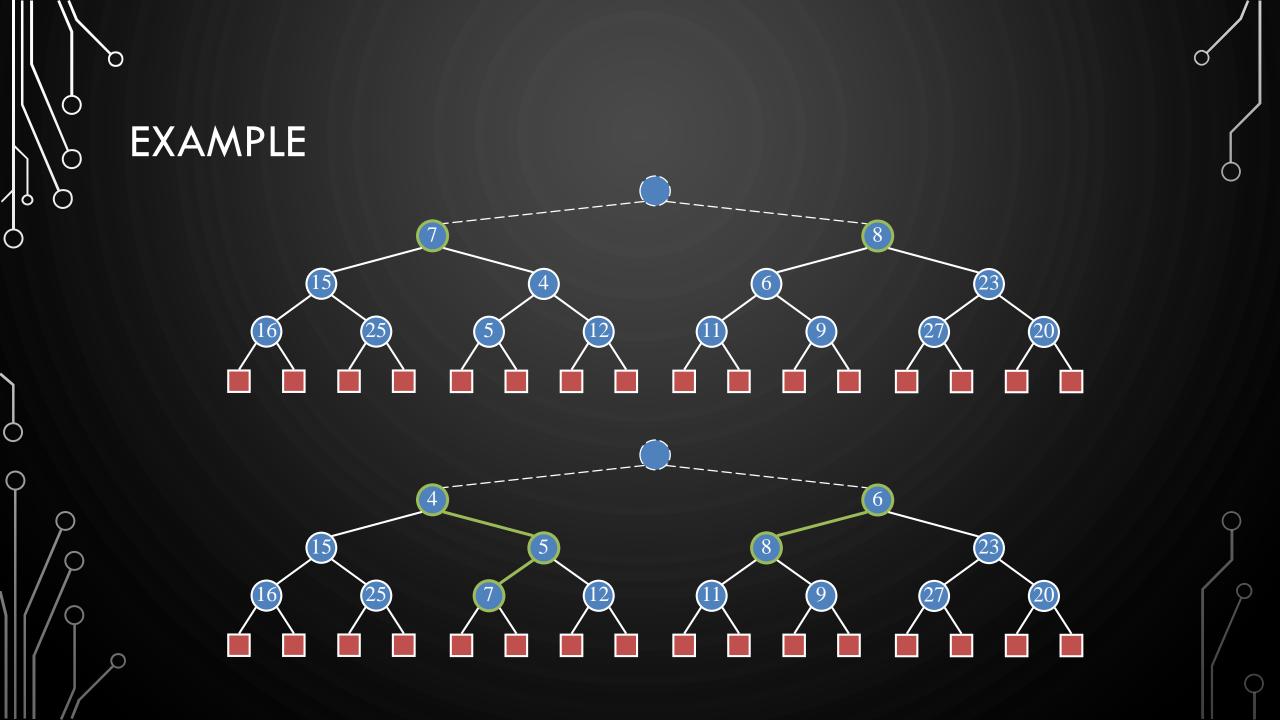
BOTTOM-UP HEAP CONSTRUCTION

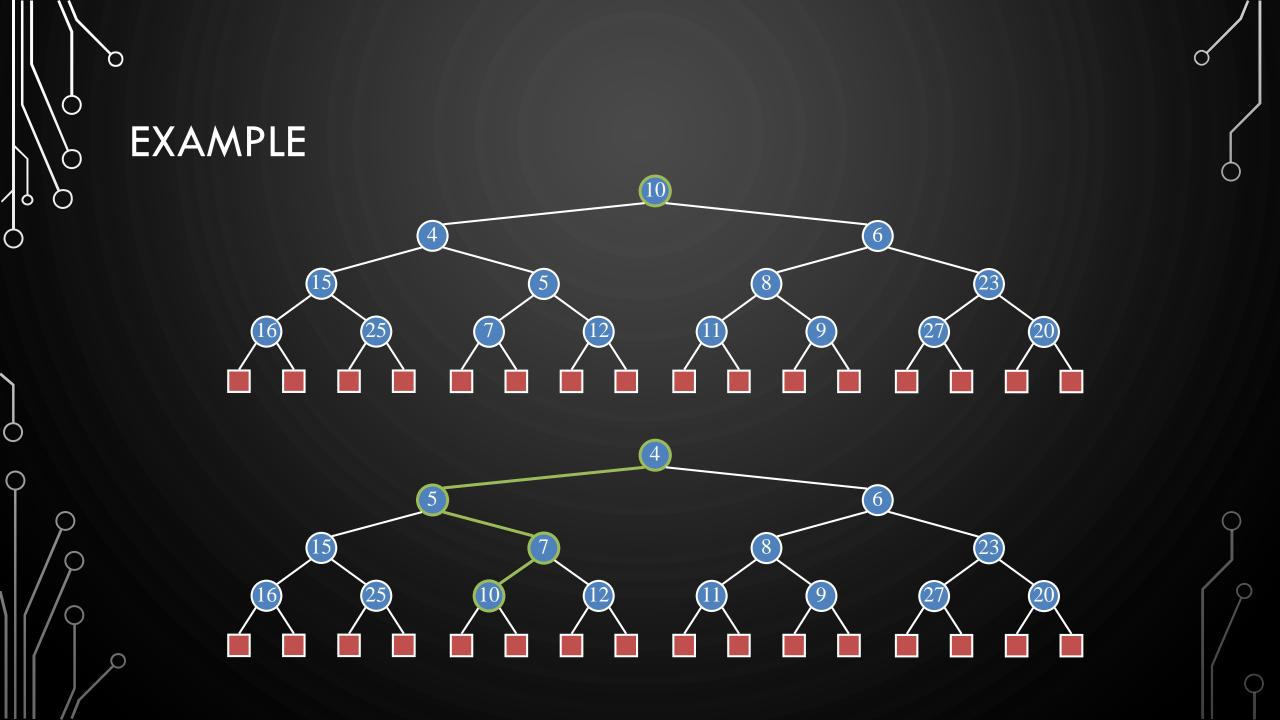
- We can construct a heap storing n given elements in using a bottom-up construction with $\log n$ phases
- In phase i, pairs of heaps with $2^i 1$ elements are merged into heaps with $2^{i+1} 1$ elements





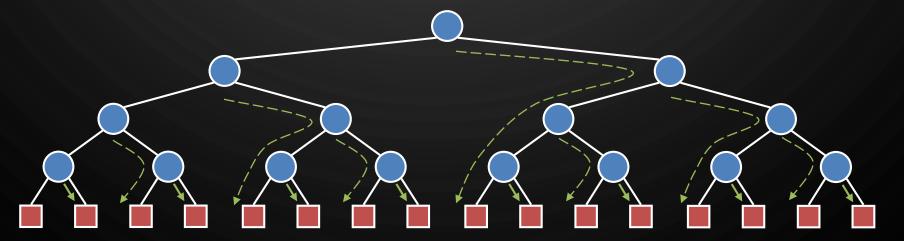






ANALYSIS

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- Thus, bottom-up heap construction runs in O(n) time
- ullet Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

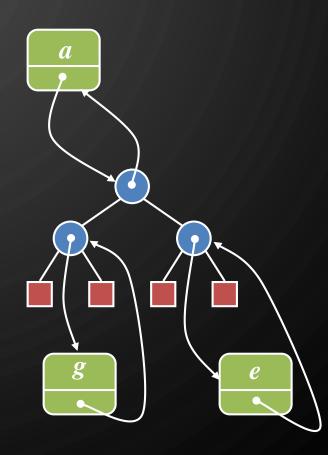


ADAPTABLE PRIORITY QUEUES

- One weakness of the priority queues so far is that we do not have an ability to update individual entries, like in a changing price market or bidding service
- We incorporate concept of positions to accomplish this (similar to List)
- Additional ADT support (also includes standard priority queue functionality)
 - insert(e) insert element e into priority queue and return a position referring to this entry
 - remove (p) remove the entry referenced by position p
 - replace (p, e) replace with e the element associated with position p and return the position of the altered entry. Can work with key or value...

LOCATION-AWARE ENTRY

- Locators decouple positions and entries in order to support efficient adaptable priority queue implementations (i.e., in a heap)
- Each position has an associated locator
- Each locator stores a pointer to its position and memory for the entry



POSITIONS VS. LOCATORS

- Position
 - represents a "place" in a data structure
 - related to other positions in the data structure (e.g., previous/next or parent/child)
 - often implemented as a pointer to a node or the index of an array cell
- Position-based ADTs (e.g., sequence and tree)
 are fundamental data storage schemes

- Locator
 - identifies and tracks a (key, element) item
 - unrelated to other locators in the data structure
 - often implemented as an object storing the item and its position in the underlying structure
- Key-based ADTs (e.g., priority queue) can be augmented with locator-based methods