
CH7.
LIST AND ITERATOR ADTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

LIST ADT

EXAMPLE

• A sequence of List operations:

ARRAY LISTS

• An obvious choice for implementing the list ADT is to use an array, 𝐴, where

𝐴 𝑖 stores (a reference to) the element with index 𝑖.

• With a representation based on an array 𝐴, the get(𝑖) and set(𝑖, 𝑒)

methods are easy to implement by accessing 𝐴[𝑖] (assuming 𝑖 is a legitimate

index).

𝐴

0 1 2 ni

𝑁 − 10

INSERTION

• In an operation add(𝑖, 𝑜), we need to make room for the new element by

shifting forward the 𝑛 − 𝑖 elements 𝐴 𝑖 , … , 𝐴 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

A

0 1 2 n

o

i

A

0 1 2 ni

A

0 1 2 ni

ELEMENT REMOVAL

• In an operation remove(𝑖), we need to fill the hole left by the removed

element by shifting backward the 𝑛 − 𝑖 − 1 elements 𝐴 𝑖 + 1 ,… , 𝐴 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

A

0 1 2 nr

A

0 1 2 n

o

i

A

0 1 2 ni

PERFORMANCE

• In an array-based implementation of a dynamic list:

• The space used by the data structure is 𝑂 𝑛

• Indexing the element (get/set) at 𝑖 takes 𝑂 1 time

• add and remove run in 𝑂 𝑛 time

• In an add operation, when the array is full, instead of throwing an exception,

we can replace the array with a larger one …

EXERCISE:

• Implement the Deque ADT update functions using List functions

• Deque update functions:

• first(), last(), addFirst(e), addLast(e),
removeFirst(), removeLast(), size(), isEmpty()

• List functions:

• get(i), set(i, e), add(i, e), remove(i), size(),
isEmpty()

LIST SUMMARY

Array

Fixed-Size or Expandable

List Singly or

Doubly Linked

add(i, e),

remove(i)

𝑂(1) Best Case (𝑖 = 𝑛)

𝑂(𝑛) Worst Case

𝑂(𝑛) Average Case

?

get(i), set(i, e) 𝑂(1) ?

size(), isEmpty() 𝑂(1) ?

POSITIONAL LISTS

• To provide for a general abstraction of a sequence of elements with the ability to

identify the location of an element, we define a positional list ADT.

• A position acts as a marker or token within the broader positional list.

• A position 𝑝 is unaffected by changes elsewhere in a list; the only way in which a

position becomes invalid is if an explicit command is issued to delete it.

• A position instance is a simple object, supporting only the following method:

• p.getElement(): Return the element stored at position 𝑝.

POSITIONAL LIST ADT

• Accessor methods:

POSITIONAL LIST ADT, 2

• Update methods:

EXAMPLE

• A sequence of Positional List

operations:

POSITIONAL LIST IMPLEMENTATION

• The most natural way to implement a

positional list is with a doubly-linked list.

prev next

element

trailerheader nodes/positions

elements

node

INSERTION, E.G., ADDAFTER(P, E)

A B X C

A B C

p

A B C

p

X

q

p q

REMOVE(P)

A B C D

p

A B C

D

p

A B C

PERFORMANCE

• Assume doubly-linked list implementation of Positional List ADT

• The space used by a list with 𝑛 elements is 𝑂(𝑛)

• The space used by each position of the list is 𝑂(1)

• All the operations of the List ADT run in 𝑂(1) time

POSITIONAL LIST SUMMARY

List Singly-Linked List Doubly- Linked

first(),

last(),

addFirst(),

addLast(),

addAfter()

𝑂(1) 𝑂(1)

addBefore(p,

e), erase()

𝑂(𝑛) Worst and Average case

𝑂(1) Best case

𝑂(1)

size(),

isEmpty()

𝑂(1) 𝑂(1)

ITERATORS

• An iterator is a software design pattern that abstracts the process of scanning

through a sequence of elements, one element at a time.

THE ITERABLE INTERFACE

• Java defines a parameterized interface, named Iterable, that includes the following

single method:

• iterator(): Returns an iterator of the elements in the collection.

• An instance of a typical collection class in Java, such as an ArrayList, is

Iterable (but not itself an iterator); it produces an iterator for its collection as the

return value of the iterator() method.

• Each call to iterator() returns a new iterator instance, thereby allowing

multiple (even simultaneous) traversals of a collection.

THE FOR-EACH LOOP

• Java’s Iterable class also plays a fundamental role in support of the “for-

each” loop syntax:

• is equivalent to:

INTERVIEW QUESTION 1

• Write code to partition a list around a value x, such that all nodes less than x

come before all nodes greater than or equal to x.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• Implement a function to check if a list is a palindrome.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

