
DEVELOPMENT AND TESTING
CH4.1.
ALGORITHM ANALYSIS

DEVELOPMENT AND TESTING

DEVELOPMENT (ONE OUT OF MANY PERSPECTIVES)

1. Solve

2. Implement

1. Write test

2. Write code

3. Repeat

3. Integrate

4. Release

TEST DRIVEN DEVELOPMENT (TDD)

PRACTICAL EXAMPLE

• Lets practice some TDD on the following example

Your project manager at BusyBody Inc says he needs a feature implemented

which determines the total amount of time a worker at the company spends at

their desk. He says the number of hours each day is already being measured and

is stored in an internal array in the code base.

PRACTICAL EXAMPLE

• How do we solve this?

Compute an average of an array!

PRACTICAL EXAMPLE

• First we write a test

• in other words, set up the scaffolding of the code instead of a function which you don’t know

if it works or not – and continue to struggle finding bugs

public static double sum(double[] arr) {

return Double.POSITIVE_INFINITY; //note this clearly does not work and is thus failing

}

public static void main() {

double[] arr = {0, 1, 1, 2, 3, 5, 8};

if(sum(arr) != 20)

cout << “Test failed?!?!?! I suck!” << endl; //you don’t really suck, its supposed to fail!

}

PRACTICAL EXAMPLE

• Before we continue, lets review

• Positives

• Scaffolding, function interface, and test all implemented

• We know it is good design

• Tests to tell if the code is correct, before we struggle with debugging many lines of code

• Negatives

• Code isn’t written until later…..but is that really that bad? NO

• In fact, with TDD you code FASTER and more EFFECTIVELY than without it

PRACTICAL EXAMPLE

• Now the code – and then run the test!

public static double sum(double[] arr) {

double s = 0;

for(double x : arr)

s += x;

return s;

}

THINGS TO REMEMBER

• Always have code that compiles

• Test writing is an art that takes practice

(and more learning!)

• Compile and test often!

TESTING FRAMEWORKS

• Many frameworks exist CppUnit, JUnit, etc.

• We will be using a much more simple unit testing framework developed by me

• A unit test is a check of one behavior of one “unit” (e.g., function) of your code

• If you have downloaded the lab zip for today open it and look there

• Follows SETT – unit testing paradigm

• Setup – create data for input and predetermine the output

• Execute – call the function in question

• Test – analyze correctness and determine true/false for test

• Teardown – cleanup any data, close buffers, etc

UNIT TEST EXAMPLE

public static boolean testSum() {

//setup

double[] arr = {0, 1, 1, 2, 3, 5, 8};

double ans = 20;

//execute

double s = sum(arr);

//test

return s == ans;

//teardown – here is empty

}

TDD - EXERCISE

• Write a Java function to find the minimum of an array of integers

• Do test driven development, starting with a good unit test

• After test is created and checked, code the function

• Pair program!

RUNTIME ANALYSIS

BIG-OH

• Given functions 𝑓 𝑛 and 𝑔 𝑛 , we say that 𝑓 𝑛 is 𝑂 𝑔 𝑛 if there are

positive constants 𝑐 and 𝑛0 such that 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for 𝑛 ≥ 𝑛0

• We need to know how to determine 𝑓 𝑛 , 𝑐, and 𝑛0

• This is all done through experiments

DETERMINING 𝑓 𝑛

• Vary the size of the input and then determine runtime using System.nanoTime()

1.for(int n = 2; n < MAX; n*=2) {

2. int r = max(10, MAX/n); //number of repetitions

3. long start = System.nanoTime();

4. for(int k = 0; k < r; ++k)

5. executeFunction();

6. long stop = System.nanoTime();

7. double elapsed = (stop – start)/1.e9/r;

8.}

DETERMINE 𝑐 AND 𝑛0

• First plot f(n) – time vs size

• Second plot f(n)/g(n) or time/theoretical vs size

• Look for where the data levels off. This will be 𝑛0

• Look for the largest value to the right of 𝑛0, this will be 𝑐

TOGETHER – TIME LINEAR SEARCH

ACTIVITY

• Determine big-oh constants for Arrays.sort();

• Theoretical complexity will be 𝑂 𝑛 log 𝑛

