M
\C> \\5
Pl 211, DEVELOPMENT AND TESTING

° CH4.1.
x ALGORITHM ANALYSIS

I,

DEVELOPMENT AND TESTING

1§ DEVELOPMENT (ONE OUT OF MANY PERSPECTIVES) {

O
1. Solve

2. Implement

1. Write test
l 2. Write code
3. Repeat

T O 3. Integrate

4. Release

1 TEST DRIVEN DEVELOPMENT (TDD)

All tests
succeed Clean up code

FIRST YOU MAKE
A TEST THAT
FAILS, THEN
/ voU B0 THE
. LEAST AMOUNT
OF WORK
POSSIBLE TO
\, MAKE IT PASS

UNDERSTAND
TEST-DRIVEN
DEVELOPMENT

_.r' ""-. F i a .
T I'M TRYING TO) THAT'S EASY,

-

e,
T o
. P
L/
Lo

>
SO, IFI'M

GOING TO
BUILD A
BRIDGE...

.S TEP ONE

WOLULD BE TO
PRIVE YOUR CAR
OVER A CLIFF

I DON'T
WANT TO BE
O YOUR
FROJECT
ANYMORE

e e,

T,
WE CAN
RISCUSS
THAT LATEE.
TAKE THESE

1\) PRACTICAL EXAMPLE (

O

® Lets practice some TDD on the following example

Your project manager at BusyBody Inc says he needs a feature implemented
l which determines the total amount of time a worker at the company spends at

their desk. He says the number of hours each day is already being measured and

Cf 5 is stored in an internal array in the code base.

1§ PRACTICAL EXAMPLE

O

®* How do we solve this¢

l Compute an average of an array!

[5

O

2

\) //' -
1\) PRACTICAL EXAMPLE (),
TESTING
® First we write a test e

® in other words, set up the scaffolding of the code instead of a function which you don’t know
if it works or not — and continue to struggle finding bugs

public static double sum(double[]

return Double.POSITIVE INFINITY; //note this clearly does not work and is thus failing
}

arr) |

public static void main() {

double[] arr = {0, 1, 1, 2, 3, 5, 8};
if (sum(arr) != 20)

...... I suck!” << endl; //you don’t really suck, its supposed to fail!

1§ PRACTICAL EXAMPLE

/
O
®* Before we continue, lets review
® Positives
® Scaffolding, function interface, and test all implemented
l ®* We know it is good design
* Tests to tell if the code is correct, before we struggle with debugging many lines of code
®* Negatives
T p ® Code isn’t written until later.....but is that really that bad¢ NO

® In fact, with TDD you code FASTER and more EFFECTIVELY than without it

1\) PRACTICAL EXAMPLE f

O
® Now the code — and then run the testl
public static double sum(double[] arr) {
J) double s = 0;
for (double x : arr)

s += X;
T ;) return s;
i }

SIMPLY EXPLAINED
THINGS TO REMEMBER

YOLR
ROOM IS

STIL
TOTAL MESS”/
DIDN'T Yol
PROMISE ME

®* Always have code that compiles

® Test writing is an art that takes practice

(and more learning!)

®* Compile and test often!

I ALWAYS
START WITH A
TEST
C)

1§ TESTING FRAMEWORKS

/]
O () () ()
®* Many frameworks exist CppUnit, JUnit, etc.
®* We will be using a much more simple unit testing framework developed by me
® A unit test is a check of one behavior of one “unit” (e.g., function) of your code
l * If you have downloaded the lab zip for today open it and look there
® Follows SETT — unit testing paradigm
® Setup — create data for input and predetermine the output
T p ® Execute — call the function in question

* Test — analyze correctness and determine true /false for test

®* Teardown — cleanup any dataq, close buffers, etc

1\\5 UNIT TEST EXAMPLE

O
public static boolean testSum() {
//setup
double[] arr = {0, 1, 1, 2, 3, 5, 8};
double ans = 20;
]) //execute
double s = sum(arr) ;
1) ;% //test
return s == ans;

//teardown — here is empty

1\) TDD - EXERCISE

O

®* Write a Java function to find the minimum of an array of integers
® Do test driven development, starting with a good unit test

® After test is created and checked, code the function

l ® Pair program!

[5

Vo f

y
O
* Given functions f(n) and g(n), we say that f(n) is O(Q(n)) if there are
positive constants ¢ and ny such that f(n) < cg(n) for n = n,
®* We need to know how to determine f(n), ¢, and n,
l ® This is all done through experiments

[5

% K\) 4
1\0 DETERMINING £ (1) f

O

® Vary the size of the input and then determine runtime using System.nanoTime()

.for(int n = 2; n < MAX; n*=2) {

int r = max (10, MAX/n); //number of repetitions

long start = System.nanoTime () ;

T 5) for(int k = 0; k < r; ++k)
executeFunction() ;

long stop = System.nanoTime () ;

double elapsed = (stop - start)/1.e9/r;

QO J o U b W DN+

—

* K\) 4
1\0 DETERMINE ¢ AND 11, ¢

/
O

® First plot f(n) — time vs size

* Second plot f(n)/g(n) or time /theoretical vs size
l ® Look for where the data levels off. This will be n,

® Look for the largest value to the right of n, this will be ¢

[o

1\\5 TOGETHER — TIME LINEAR SEARCH
O

1\0 ACTIVITY

O

®* Determine big-oh constants for Arrays.sort();

* Theoretical complexity will be O(nlogn)

!
[7

