
CH4.2-4.3.
ALGORITHM ANALYSIS
CH6.
STACKS, QUEUES, AND DEQUES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

ANALYSIS OF ALGORITHMS (CH 4.2-4.3)

AlgorithmInput Output

PSEUDOCODE

• High-level description of an algorithm

• More structured than English prose

• Less detailed than a program

• Preferred notation for describing algorithms

• Hides program design issues

PSEUDOCODE DETAILS

• Control flow

• if … then … [else …]

• while … do …

• repeat … until …

• for … do …

• Indentation replaces braces

• Method declaration

• Algorithm method (arg [, arg…])

• Input …

• Output …

• Method call

• method (arg [, arg…])

• Return value

• return expression

• Expressions:

• Assignment (←, not =)

• Equality testing (= not ==)

• 𝑛2 Superscripts and other mathematical

formatting allowed

RUNNING TIME

• Most algorithms transform input objects

into output objects.

• The running time of an algorithm typically

grows with the input size.

• Average case time is often difficult to

determine.

• We focus on the worst case running time.

• Easier to analyze

• Crucial to applications such as games,

finance and robotics
0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case

average case

worst case

LIMITATIONS OF EXPERIMENTS

• It is necessary to implement the algorithm, which may be difficult

• Results may not be indicative of the running time on other inputs not included

in the experiment.

• In order to compare two algorithms, the same hardware and software

environments must be used

THEORETICAL ANALYSIS

• Uses a high-level description of the algorithm instead of an implementation

• Characterizes running time as a function of the input size, 𝑛 (Big-Oh notation)

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm independent of the

hardware/software environment

• How

• Count the operations!

BIG-OH NOTATION

• Given functions 𝑓 𝑛 and 𝑔 𝑛 , we say that 𝑓 𝑛 is 𝑂 𝑔 𝑛 if there are positive

constants 𝑐 and 𝑛0 such that 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for 𝑛 ≥ 𝑛0
• 𝑓 𝑛 - real computation time (measured time if you will)

• 𝑔 𝑛 - approximation function

• Example: 2n + 10 is O(n)

• 2𝑛 + 10 ≤ 𝑐𝑛

•
10

𝑐−2
≤ 𝑛

• Pick 𝑐 = 3 and 𝑛0 = 10

• Easy method: Strip constants, and take highest order terms only!

• Constants do no matter because of limits as 𝑛 goes to infinity

SEVEN IMPORTANT FUNCTIONS

• Seven functions that often appear in algorithm

analysis:

• Constant 1

• Logarithmic log 𝑛

• Linear 𝑛

• N-Log-N 𝑛 log𝑛

• Quadratic 𝑛2

• Cubic 𝑛3

• Exponential 2𝑛

• In a log-log chart, the slope of the line

corresponds to the growth rate

1 2 3 4 5 6 7 8 9 10

T
im

e

Input Size

1 log n n n log n n^2 n^3 2^n

ABSTRACT DATA TYPES (ADTS)

• An abstract data type (ADT) is an
abstraction of a data structure

• An ADT specifies:
• Data stored

• Operations on the data

• Error conditions associated with operations

• Example: ADT modeling a simple stock

trading system

• The data stored are buy/sell orders

• The operations supported are

• order buy(stock, shares, price)

• order sell(stock, shares,

price)

• void cancel(order)

• Error conditions:

• Buy/sell a nonexistent stock

• Cancel a nonexistent order

STACKS (CH 6.1)

STACKS

• A data structure similar to a neat stack of something, basically only access to top

element is allowed – also reffered to as LIFO (last-in, first-out) storage

• Direct applications

• Page-visited history in a Web browser

• Undo sequence in a text editor

• Chain of method calls in the Java Virtual Machine

• Indirect applications

• Auxiliary data structure for algorithms

• Component of other data structures

THE STACK ADT

• The Stack ADT stores arbitrary objects

• Insertions and deletions follow the last-

in first-out (LIFO) scheme

• Main stack operations:

• push(e): inserts element e at the top of

the stack

• object pop(): removes and returns

the top element of the stack (last inserted

element)

• Auxiliary stack operations:

• object top(): returns reference to

the top element without removing it

• integer size(): returns the number

of elements in the stack

• boolean isEmpty(): a Boolean

value indicating whether the stack is

empty

• Attempting the execution of pop or

top on an empty stack return null

EXERCISE: STACKS

• Describe the output of the following series of stack operations
• Push(8)

• Push(3)

• Pop()

• Push(2)

• Push(5)

• Pop()

• Pop()

• Push(9)

• Push(1)

EXCEPTIONS VS. RETURNING NULL

• Attempting the execution of an

operation of an ADT may sometimes

cause an error condition

• Java supports a general abstraction for

errors, called exception

• An exception is said to be thrown by an

operation that cannot be properly

executed

• In our Stack ADT, we do not use

exceptions

• Instead, we allow operations pop

and top to be performed even if the

stack is empty

• For an empty stack, pop and top

simply return null

METHOD STACK IN THE JVM

• The Java Virtual Machine (JVM) keeps track of the
chain of active methods with a stack

• When a methods is called, the JVM pushes on the
stack a frame containing
• Local variables and return value

• Program counter, keeping track of the statement being
executed

• When a method ends, its frame is popped from the
stack and control is passed to the method on top of
the stack

main() {

int i = 5;

foo(i);

}

foo(int j) {

int k = j+1;

bar(k);

}

bar(int m) {

…

}

bar

PC = 1

m = 6

foo

PC = 3

j = 5

k = 6

main

PC = 2

i = 5

ARRAY-BASED STACK

• A simple way of implementing the
Stack ADT uses an array

• We add elements from left to right

• A variable keeps track of the index
of the top element

size()

1.return t + 1

pop()

1.if isEmpty() then
2. return null

3. 𝑡 ← 𝑡 − 1
4.return 𝑆 𝑡 + 1

S

0 1 2 t

…

ARRAY-BASED STACK

• The array storing the stack elements
may become full

• A push operation will then throw an
IllegalStateException

• Limitation of the array-based
implementation

• Not intrinsic to the Stack ADT

push(𝑜)

1.if 𝑡 = 𝑆. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 then

2. throw IllegalStateException

3. 𝑡 ← 𝑡 + 1
4. 𝑆 𝑡 ← 𝑜

S

0 1 2 t

…

PERFORMANCE AND LIMITATIONS
- ARRAY-BASED IMPLEMENTATION OF STACK ADT

• Performance

• Let 𝑛 be the number of elements in the stack

• The space used is 𝑂(𝑛)

• Each operation runs in time 𝑂(1)

• Limitations

• The maximum size of the stack must be defined a priori, and cannot be changed

• Trying to push a new element into a full stack causes an implementation-specific

exception

GROWABLE ARRAY-BASED STACK

• In a push operation, when the
array is full, instead of throwing
an exception, we can replace the
array with a larger one

• How large should the new array
be?
• incremental strategy: increase the

size by a constant 𝑐
• doubling strategy: double the size

push

Input: Element 𝑜

1.if 𝑡 = 𝑆. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 then

2. 𝐴 ← new array of size …

3. for 𝑖 ← 0 to 𝑡 do

4. 𝐴 𝑖 ← 𝑆[𝑖]

5. 𝑆 ← 𝐴

6. 𝑆 𝑡 ← 𝑜
7. 𝑡 ← 𝑡 + 1

COMPARISON OF THE STRATEGIES

• We compare the incremental strategy and the doubling strategy by analyzing

the total time 𝑇(𝑛) needed to perform a series of 𝑛 push operations

• We assume that we start with an empty stack represented

• We call amortized time of a push operation the average time taken by a push

over the series of operations, i.e., 𝑇(𝑛)/𝑛

INCREMENTAL STRATEGY ANALYSIS

• Let 𝑐 be the constant increase and 𝑛 be the number of push operations

• We replace the array 𝑘 = 𝑛/𝑐 times

• The total time 𝑇(𝑛) of a series of 𝑛 push operations is proportional to

𝑛 + 𝑐 + 2𝑐 + 3𝑐 + 4𝑐 + … + 𝑘𝑐
= 𝑛 + 𝑐 1 + 2 + 3 + … + 𝑘

= 𝑛 + 𝑐
𝑘(𝑘 + 1)

2

= 𝑂 𝑛 + 𝑘2 = 𝑂 𝑛 +
𝑛2

𝑐2
= 𝑂 𝑛2

• 𝑇(𝑛) is 𝑂(𝑛2) so the amortized time of a push is
O n2

n
= 𝑂(𝑛)

Side note:

1 + 2 +⋯+ 𝑘

=

𝑖=0

𝑘

𝑖

=
𝑘 𝑘 + 1

2

DOUBLING STRATEGY ANALYSIS

•We replace the array 𝑘 = log2 𝑛
times

• The total time 𝑇(𝑛) of a series of n
push operations is proportional to

𝑛 + 1 + 2 + 4 + 8 + …+ 2𝑘

= 𝑛 + 2𝑘+1 − 1
= 𝑂 𝑛 + 2𝑘 = 𝑂 𝑛 + 2log2 𝑛 = 𝑂 𝑛

• 𝑇(𝑛) is 𝑂 𝑛 so the amortized time of

a push is
O n

n
= 𝑂(1)

1

2

1

4

8

EXERCISE

• Describe how to implement a stack using a singly-linked list

• Stack operations: push(𝑒), pop(), size(), isEmpty()

• For each operation, give the running time

STACK WITH A SINGLY LINKED LIST

• We can implement a stack with a singly linked list

• The top element is stored at the first node of the list

• The space used is 𝑂(𝑛) and each operation of the Stack ADT takes 𝑂(1) time

nodes

elements

top

STACK SUMMARY

Array

Fixed-Size

Array Expandable

(doubling strategy)

List

Singly-Linked

pop() 𝑂(1) 𝑂(1) 𝑂(1)

push(o) 𝑂(1) 𝑂(𝑛)Worst Case

𝑂(1) Best Case

𝑂(1) Average Case

𝑂(1)

top() 𝑂(1) 𝑂(1) 𝑂(1)

size(),

empty()

𝑂(1) 𝑂(1) 𝑂(1)

QUEUES (CH 6.2)

APPLICATIONS OF QUEUES

• Direct applications

• Waiting lines

• Access to shared resources (e.g., printer)

• Multiprogramming

• Indirect applications

• Auxiliary data structure for algorithms

• Component of other data structures

THE QUEUE ADT

• The Queue ADT stores arbitrary objects

• Insertions and deletions follow the first-in
first-out (FIFO) scheme

• Insertions are at the rear of the queue and
removals are at the front of the queue

• Main queue operations:

• enqueue(e): inserts element 𝑒 at the end
of the queue

• object dequeue(): removes and

returns the element at the front of the
queue

• Auxiliary queue operations:

• object first(): returns the
element at the front without removing it

• integer size(): returns the
number of elements stored

• boolean isEmpty(): indicates
whether no elements are stored

• Boundary cases

• Attempting the execution of dequeue
or front on an empty queue returns null

EXERCISE: QUEUES

• Describe the output of the following series of queue operations
• enqueue(8)

• enqueue(3)

• dequeue()

• enqueue(2)

• enqueue(5)

• dequeue()

• dequeue()

• enqueue(9)

• enqueue(1)

ARRAY-BASED QUEUE

• Use an array of size 𝑁 in a circular fashion

• Two variables keep track of the front and rear

• 𝑓 index of the front element

• 𝑠𝑧 number of stored elements

• When the queue has fewer than 𝑁 elements,
array location 𝑟 ← (𝑓 + 𝑠𝑧) 𝑚𝑜𝑑 𝑁
is the first empty slot past
the rear of the queue Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

QUEUE OPERATIONS

•We use the modulo operator

(remainder of division)

size()

1.return 𝑠𝑧

isEmpty()

1.return 𝑠𝑧 = 0

Q

0 1 2 rf

Q

0 1 2 fr

QUEUE OPERATIONS

• Operation enqueue throws an exception if
the array is full

• This exception is implementation-dependent

enqueue(o)

1.if size() = 𝑁 − 1 then

2. throw IllegalStateException

3. 𝑟 ← 𝑓 + 𝑠𝑧 mod 𝑁
4. 𝑄 𝑟 ← 𝑜
5. 𝑠𝑧 ← 𝑠𝑧 + 1

Q

0 1 2 rf

Q

0 1 2 fr

QUEUE OPERATIONS

• Operation dequeue returns null if
the queue is empty

dequeue()

1.if empty() then
2. return null

3. 𝑜 ← 𝑄[𝑓]
4. 𝑓 ← 𝑓 + 1 mod 𝑁
5. 𝑠𝑧 ← 𝑠𝑧 − 1
6.return 𝑜

Q

0 1 2 rf

Q

0 1 2 fr

PERFORMANCE AND LIMITATIONS
- ARRAY-BASED IMPLEMENTATION OF QUEUE ADT

• Performance

• Let 𝑛 be the number of elements in the queue

• The space used is 𝑂(𝑛)

• Each operation runs in time 𝑂(1)

• Limitations

• The maximum size of the queue must be defined a priori, and cannot be

changed

GROWABLE ARRAY-BASED QUEUE

• In enqueue(𝑒), when the array is full, instead of throwing an

exception, we can replace the array with a larger one

• Similar to what we did for an array-based stack

• enqueue(𝑒) has amortized running time

• 𝑂(𝑛) with the incremental strategy

• 𝑂(1) with the doubling strategy

EXERCISE

• Describe how to implement a queue using a singly-linked list

• Queue operations: enqueue(𝑒), dequeue(), size(), empty()

• For each operation, give the running time

QUEUE WITH A SINGLY LINKED LIST

• The front element is stored at the head of the list, The rear element is stored at the tail of the list

• The space used is 𝑂(𝑛) and each operation of the Queue ADT takes 𝑂(1) time

• NOTE: we do not have the limitation of the array based implementation on the size of the stack

b/c the size of the linked list is not fixed, i.e., the queue is NEVER full.

f

r

nodes

elements

front rear

QUEUE SUMMARY

Array

Fixed-Size

Array Expandable

(doubling strategy)

List

Singly-Linked

dequeue() 𝑂(1) 𝑂(1) 𝑂(1)

enqueue(𝑜) 𝑂(1) 𝑂(𝑛)Worst Case

𝑂(1) Best Case

𝑂(1) Average Case

𝑂(1)

front() 𝑂(1) 𝑂(1) 𝑂(1)

size(), empty() 𝑂(1) 𝑂(1) 𝑂(1)

THE DOUBLE-ENDED QUEUE ADT (CH. 6.3)

• The Double-Ended Queue, or Deque, ADT stores
arbitrary objects. (Pronounced ‘deck’)

• Richer than stack or queue ADTs. Supports
insertions and deletions at both the front and the
end.

• Main deque operations:

• addFirst(e): inserts element 𝑒 at the
beginning of the deque

• addLast(e): inserts element 𝑒 at the end of
the deque

• object removeFirst(): removes and
returns the element at the front of the queue

• object removeLast(): removes and
returns the element at the end of the queue

• Auxiliary queue operations:

• object first(): returns the element at
the front without removing it

• object last(): returns the element at
the front without removing it

• integer size(): returns the number of
elements stored

• boolean isEmpty(): indicates
whether no elements are stored

DEQUE WITH A DOUBLY LINKED LIST

• The front element is stored at the first node

• The rear element is stored at the last node

• The space used is 𝑂(𝑛) and each operation of the Deque ADT takes 𝑂(1) time

lastfirst

elements

PERFORMANCE AND LIMITATIONS
- DOUBLY LINKED LIST IMPLEMENTATION OF DEQUE ADT

• Performance

• Let 𝑛 be the number of elements in the deque

• The space used is 𝑂(𝑛)

• Each operation runs in time 𝑂(1)

DEQUE SUMMARY

Array

Fixed-Size

Array Expandable

(doubling strategy)

List

Singly-Linked

List

Doubly-Linked

removeFirst(),

removeLast()

𝑂(1) 𝑂(1) 𝑂(𝑛) for one at list tail,

𝑂(1) for other

𝑂(1)

addFirst(o),

addLast(o)

𝑂(1) 𝑂(𝑛) Worst Case

𝑂(1) Best Case

𝑂(1) Average Case

𝑂(1) 𝑂(1)

first(), last() 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1)

size(),

isEmpty()

𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1)

INTERVIEW QUESTION 1

• How would you design a stack which, in addition to push and pop, also has a

function min which returns the minimum element? push, pop and min should

all operate in 𝑂(1) time

INTERVIEW QUESTION 2

• In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of

different sizes which can slide onto any tower. The puzzle starts with disks sorted in

ascending order of size from top to bottom (i.e. , each disk sits on top of an even

larger one). You have the following constraints:

(1) Only one disk can be moved at a time.

(2) A disk is slid off the top of one tower onto the next tower.

(3) A disk can only be placed on top of a larger disk.

Write pseudocode to move the disks from the first tower to the last using stacks.

