
WELCOME TO CSCE 221—
DATA STRUCTURES



SYLLABUS



CH3.
FUNDAMENTAL DATA STRUCTURES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH 

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND 

GOLDWASSER (WILEY 2016)



ARRAYS



ARRAY DEFINITION

• An array is a sequenced collection of variables all of the same type. Each 

variable, or cell, in an array has an index, which uniquely refers to the value 

stored in that cell. The cells of an array, 𝐴, are numbered 0, 1, 2, and so on. 

• Each value stored in an array is often called an element of that array. 

A

0 1 2 ni



ARRAY LENGTH AND CAPACITY

• Since the length of an array determines the maximum number of things that 

can be stored in the array, we will sometimes refer to the length of an array 

as its capacity. 

• In Java, the length of an array named a can be accessed using the syntax 

a.length. Thus, the cells of an array, a, are numbered 0, 1, 2, and so on, 

up through a.length−1, and the cell with index 𝑘 can be accessed with 

syntax a[k]. 

a

0 1 2 nk



DECLARING ARRAYS (FIRST WAY)

• The first way to create an array is to use an assignment to a literal form when 

initially declaring the array, using a syntax as: 

• The elementType can be any Java base type or class name, and 

arrayName can be any valid Java identifier. The initial values must be of 

the same type as the array. 



DECLARING ARRAYS (SECOND WAY)

• The second way to create an array is to use the new operator. 

• However, because an array is not an instance of a class, we do not use a typical 

constructor. Instead we use the syntax: 

new elementType[length] 

• length is a positive integer denoting the length of the new array. 

• The new operator returns a reference to the new array, and typically this 

would be assigned to an array variable. 



ARRAYS OF CHARACTERS OR OBJECT REFERENCES

• An array can store primitive elements, such as characters.

• An array can also store references to objects.



ADDING AN ENTRY

• To add an entry 𝑒 into array 𝐴 at 

index 𝑖, we need to make room for it 

by shifting forward the 𝑛 − 𝑖 entries 

𝐴 𝑖 , … , 𝐴 𝑛 − 1

Add

Input: Array 𝐴, 

index 𝑖, element 𝑒

1.for 𝑘 ← 𝑛, 𝑛 − 1,… , 𝑖 + 1

2. 𝐴 𝑘 − 1 ← 𝐴[𝑘]

3. 𝐴 𝑖 ← 𝑒

4. 𝑛 ← 𝑛 + 1
A

0 1 2 ni

A

0 1 2 ni

0 1 2 n

e

i

A



REMOVING AN ENTRY

• To remove the entry 𝑒 at index 𝑖, we 

need to fill the hole left by 𝑒 by 

shifting backward the 𝑛 − 𝑖 − 1

elements 𝐴 𝑖 + 1 ,… , 𝐴[𝑛 − 1]

Add

Input: Array 𝐴, 

index 𝑖, element 𝑒

1.for 𝑘 ← 𝑖 + 1,… , 𝑛 − 1

2. 𝐴 𝑘 − 1 ← 𝐴[𝑘]

3. 𝐴 𝑛 − 1 ← 𝑛𝑢𝑙𝑙

4. 𝑛 ← 𝑛 − 10 1 2 n

e

i

A

0 1 2 ni

A

0 1 2 ni

A



SINGLY LINKED LISTS



SINGLY LINKED LIST

• A singly linked list is a concrete data structure consisting of a sequence of 

nodes, starting from a head pointer

• Each node stores

• element

• link to the next node

next

element node

A B C D


head



INSERTING AT THE HEAD

AddFirst

Input: List l, Element e

1. 𝑛 ← 𝑁𝑜𝑑𝑒(𝑒) //Allocate new 

node 𝑛 to contain element 

𝑒

2. 𝑛. 𝑛𝑒𝑥𝑡 ← 𝑙. ℎ𝑒𝑎𝑑 //Have new 

node point to old head

3. 𝑙. ℎ𝑒𝑎𝑑 ← 𝑛 //Update head 

to point to new node



INSERTING AT THE TAIL

AddLast

Input: List 𝑙, Element 𝑒
1. 𝑛 ← 𝑁𝑜𝑑𝑒 𝑒 //Allocate a new 

node to contain element 𝑒
2. 𝑛. 𝑛𝑒𝑥𝑡 ← 𝑛𝑢𝑙𝑙 //Have new node 

point to null

3. 𝑙. 𝑡𝑎𝑖𝑙. 𝑛𝑒𝑥𝑡 ← 𝑛 //Have old last 

node point to new node

4. 𝑡𝑎𝑖𝑙 ← 𝑛 //Update tail to 

point to new node



REMOVING AT THE HEAD

RemoveFirst

Input: List 𝑙

1. 𝑙. ℎ𝑒𝑎𝑑 ← 𝑙. ℎ𝑒𝑎𝑑. 𝑛𝑒𝑥𝑡 //Update 

head to point to next 

node in the list

2.Allow garbage collector 

to reclaim the former 

first node



REMOVING AT THE TAIL 

• Removing at the tail of a singly linked list is not efficient!

• There is no constant-time way to update the tail to point to the previous node



DOUBLY LINKED LISTS



DOUBLY LINKED LIST

• A doubly linked list can be traversed 

forward and backward

• Nodes store:

• element

• link to the previous node

• link to the next node

• Special trailer and 

header nodes

trailerheader nodes/positions

elements

prev next

element node



INSERTION

• Insert a new node, 𝑞, between 𝑝 and its successor.

A B C

𝑝

A B C

𝑝

X

𝑞

A B X C

𝑝 𝑞



DELETION

• Remove a node, 𝑝, from a doubly linked list.

A B C D

𝑝

A B C

D

𝑝

A B C


