CMSC 221 - Math, Pseudocode, and ETEX

Jory Denny

For the following sections, the final product is shown in the pdf and how to generate the item is found in the tex file. Single best $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ resource: https://en.wikibooks.org/wiki/LaTeX. It is typically the top result when Google search contains "latex". Then, if you can't find the answer, ask Piazza and I will help steer you. I will likely add to this list throughout the semester as needed.

1 Math and Pseudocode

1.1 Math

Use the following recommendations for mathematics:

- All variables should be specified in math mode. Example x. Single data elements (doesn't matter the type) should be named with a lowercase letter. Example x, where x is an integer. Multiple data elements, i.e., sets (doesn't matter the data structure) should be named with a capital letter. Example X, where X is a set of real numbers.
- Use \leftarrow (gets) for assignment. Example $x \leftarrow 0$. Use $=$ (equals) for equality comparison of single elements. Example $x=y$. Use \equiv (equivalent) for equality comparison of sets. Example $X \equiv Y$.
- Use \in (in) for stating an-element-of. Example $x \in X$ means that x is an element of (or in) the set X. Use \subset or \subseteq (subset or proper subset, respectively) for subset statements. Example $X \subseteq Y$ means that the set X is a proper subset of the set Y.
- Avoid "type" as much as possible. I mean you should not say "int $x=0$;" but rather " $x \leftarrow 0$ " without the type specified.
- Almost anything is allowed that you might imagine in math mode. Common ones you might want: Fractions $\frac{1}{2}$, Subscripts x_{i}, Superscripts x^{2}, and Summations $\sum_{i=0}^{n}$ or $\sum_{a \in A}$. Subscripts are used to name elements of series.
- Use propositional logic: \neg is negation (not !), \wedge is conjunction (and) (not \&\&), and \vee is disjunction (or) (not \|).
- Website for other symbols: http://web.ift.uib.no/Teori/KURS/WRK/TeX/symALL.html

1.2 Pseudocode

Use the following recommendations for pseudocode:

- Define all input and output using \INPUT and \backslash OUTPUT prior to the steps of the algorithm
- Comments can be added either with a \backslash COMMENT on \backslash STATE or as an optional parameter to loops and conditionals.
- Function calls to other algorithms, member functions of ADTs, etc should be in math mode but as a different font using $\{\backslash$ mathtt $\}$ for example.
- Use \backslash IF, \backslash ELSIF, and \backslash ELSE for if, else-if, and else, respectively.
- Use \backslash FOR for for-loops and \backslash FORALL for for-each-loops.
- Use $\backslash W H I L E$ for while-loops and \backslash REPEAT and \backslash UNTIL for do-while-loops.

Examples for all of the recommendations:

```
Algorithm 1 Example
Input: Set \(X\), Stack \(Y\), positive integer \(n\)
Output: Tree \(T\)
    Step 1 \{Comment on step\}
    Y.pop() \{Example function call of a variable \(\}\)
    if \(n=0\) then \{Comment on if\}
        Step 2
    else if \(n=1\) then
        Step 3
    else
        Step 4
    for \(i \leftarrow 0 . . n\) do
        Step 5
    for all \(x \in X\) do
        Step 6
    while \(\neg\) Y.isEmpty() do
        Step 7
    repeat
        Step 7
    until \(\neg\) Y.isEmpty ()
    return Return something
```


2 IATEX Features

2.1 Figures

There are a few ways to include figures in a tex document. However, note that not all image formats are treated equal. You can google how to include a specific image format, but the easiest to include in a document is eps (Enriched Post Script) format.

Basically you use the "figure" environment. Environments in IATEX typically start with a \backslash begin command and end with a \backslash end command. Figure 1 shows an example of this.

Figure 1: Figure included in document

There is also a much fancier way of generating images. You can use the package tikz. I would give an example, but each thing you want to do with it requires a different example. So if you are interested I can give you more information.

2.2 Tables

Tables are fairly easy to manage. Use a tabular environment in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. There are many, many examples and small settings to get alignments the way you want. Ask if you can't figure something out. Simple example:

Centered text	Left Justified text	Right Justified text
Hey look	its	row two.

3 Citing references

Cite using the \backslash cite command [1]. Then add the reference either using Bibtex or at the end of your text document using $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$'s embedded citation system. Bibtex is much nicer but it is more difficult to setup.

References

[1] Leslie Lamport, ${ }^{A} T_{E} X$: a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.

