
CHAPTER 9
OBJECTS AND CLASSES
CHAPTER 10
OBJECT-ORIENTED THINKING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO JAVA PROGRAMMING, LIANG (PEARSON 2014)

MOTIVATIONS

• Suppose you want to develop a graphical user interface as shown below. How

do you program it?

• Facebook?

• Simulation/animation for Pixar movies?

A FOUNDATION FOR PROGRAMMING

Objects

Functions and Modules

Arrays

Conditionals and Loops

Input and Output

Primitive data, Expressions, Math, String

Create your own

data typesAllows scaling to

large programs!

Any program

you want!

WHAT ISN’T “NEW” IN “OBJECTS”?

• Some things we have seen and are familiar with, but do not fully understand

the details:

• public class MyProgram //Seen this every program

• String s; //not an integer, character, boolean, or floating-point number

• Scanner in = new Scanner(System.in); //Making variables of complex types

• s.charAt(5); //using methods tied to a variable’s value

DATA TYPES

• Data type. Set of values and operations on those values.

• Primitive types. Values directly map to machine representation; operations

directly map to machine instructions.

• We want to write programs that process other types of data.

• Colors, pictures, strings, vectors, polygons, input streams, …

Data Type Set of Values Operations

boolean true, false not, and, or, xor

int [−231, 231) add, subtract, multiply

double any of 2^64 real numbers add, subtract, multiply

OBJECT-ORIENTED PROGRAMMING CONCEPTS

• Object-oriented programming (OOP) involves programming using objects

• An object represents an entity in the real world that can be distinctly identified. For

example, a student, a desk, a circle, a button, and even a loan can all be viewed as

objects. An object has a unique identity, state, and behaviors.

• The state of an object consists of a set of data fields (also known as properties) with their

current values.

• The behavior of an object is defined by a set of methods.

Data Type Set of Values Operations

Color 24 bits getRed(), brighten()

Picture 2D array of Colors getPixel(i, j), setPixel(i, j)

String Sequence of characters length(), substring(), compare()

OBJECTS

• An object has both a state and behavior. The state defines the object, and the

behavior defines what the object does.

• An object class defines its possible states and its behaviors

• An object instance is a variable of the object type, i.e., it is a specific “value” or state

Class Name: Circle

Data Fields:
radius

Methods:
getArea()

Circle Instance 1

Data Fields:
radius: 10

Circle Instance 2

Data Fields:
radius: 25

Circle Instance 3

Data Fields:
radius: 125

A class template defines

the object

Three instances

of the Circle

class

CLASSES

• Classes are constructs that define objects of the same type

• A Java class uses

• Variables to define data fields

• Methods to define behaviors

• A special type of methods, known as constructors, which are invoked to construct

instances (objects) from the class

UML CLASS DIAGRAM

Circle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

Class name

Data fields

Constructors and methods

circle1: Circle

radius: 10

circle2: Circle

radius: 25

circle3: Circle

radius: 125

UML notation for

instances (objects)

EXAMPLE UML DIAGRAM
DEFINING A TV OBJECT

 TV

channel: int

volumeLevel: int

on: boolean

+TV()

+turnOn(): void

+turnOff(): void

+setChannel(newChannel: int): void

+setVolume(newVolumeLevel: int): void

+channelUp(): void

+channelDown(): void

+volumeUp(): void

+volumeDown(): void

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

The + sign indicates

a public modifier.

OBJECT-ORIENTED PROGRAMMING

• Object-oriented Programming – design principle for large programs

• Abstraction – Modeling objects

• Composition – Modeling object associations (HAS-A relationship)

• Encapsulation – combining data and operations (methods); data hiding from misuse

(private vs public)

• Inheritance – Types and sub-types (IS-A relationship)

• Polymorphism – Abstract types that can act as other types (for algorithm design)

ABSTRACTION AND ENCAPSULATION

• Abstraction means to separate class implementation from the use of the class.

• A description of the class lets the user know how the class can be used (class contract)

• Thus, the user of the class does not need to know how the class is implemented

• The detail of implementation is encapsulated and hidden from the user.

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

OBJECT COMPOSITION

• Composition/Aggregation models has-a relationships and represents an

ownership relationship between two objects

• The owner object is called an aggregating object and its class an aggregating class. The

subject object is called an aggregated object and its class an aggregated class.

• Typically represented as a data field in the aggregating object

AGGREGATION OR COMPOSITION

• Many texts don’t differentiate

between the two, calling them both

compositions – the idea of an object

owning another object

• However, the technical difference is:

• Composition – a relationship where

the owned object cannot exist

independent of the owner

• Aggregation – a relationship where

the owned object can exist independent

of the owner

AGGREGATION BETWEEN SAME CLASS

• Aggregation may exist between objects of the same class. For example, a

person may have a supervisor.

Person

Supervisor

1

1

Person

Supervisor

1

m

Aggregation of a single

Person owning a person

Aggregation of a single

Person owning multiple

persons

EXAMPLE
THE COURSE CLASS

Course

-courseName: String

-students: Student[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: Student): void

+dropStudent(student: Student): void

+getStudents(): Student[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

PRACTICE

• Describe objects (data and functions) for an Aquarium

• Be descriptive

• Objects can contain other objects!

• Objects interact with other objects!

EXERCISE

• Describe objects (data and functions) for the world of Harry Potter

• Be descriptive

• Objects can contain other objects!

• Objects interact with other objects!

CLASSES

1. public class Circle {

2. /** Radius of the circle */

3. private double radius = 1.0;

4. /** Default construct a circle of radius 1 */

5. public Circle() {

6. }

7. /** Contruct a circle of desired radius */

8. public Circle(double r) {

9. radius = r;

10. }

11. /** Compute the area of the circle */

12. public double getArea() {

13. return radius*radius*Math.PI;

14. }

15. }

Data fields

Constructors

Methods

USING CLASSES

1. Circle c1 = new Circle(); //declare and instantiate a circle

//with the default constructor

2. Circle c2 = new Circle(5); //declare and instantiate a circle

//with radius 5

3. System.out.println(c2.getArea()); //Use the circle

4. //System.out.println(c1.radius); //Compiler error!

//Cannot access radius.

DEFINING CLASSES

• Fields, methods, and constructors can appear in any order.

However, to make life easy, use the following template:

public class ClassName {

/** First, place all public data fields

(usually static, this is rare) */

/** Next, place all private fields here */

/** Next, define a default constructor

followed by non-default constructors */

/** Next, define all public methods */

/** Next, define all private methods

(helpers */

/** Last, define all static methods */

}

• Example:

public class Color {

private int red = 0,

green = 0,

blue = 0;

public Color() {}

public Color(int r, int g, int b) {

red = r; green = g; blue = b;

}

public int getRed() {return red;}

public int getGreen() {return green;}

public int getBlue() {return blue;}

}

CONSTRUCTORS

• Constructors are a special kind of

methods that are invoked to

construct objects.

• This is where you describe how

memory for an object is initialized

Circle() {

}

Circle(double newRadius) {

radius = newRadius;

}

CONSTRUCTORS

• A constructor with no parameters is referred to as a no-arg constructor

• Constructors must have the same name as the class itself

• Constructors do not have a return type, not even void

• Constructors are invoked using the new operator when an object is created.

Constructors play the role of initializing objects.

• new ClassName();

• Example: new Circle(2.3);

DEFAULT CONSTRUCTOR

• A class may be defined without constructors

• In this case, a no-arg constructor with an empty body is implicitly defined in

the class.

• This constructor, called a default constructor, is provided automatically only if

no constructors are explicitly defined in the class.

DECLARING OBJECT REFERENCE VARIABLES

• To reference an object, assign the object to a reference variable (we saw the same

when discussing arrays)

• To declare a reference variable, use the syntax:

ClassName objectRefVar;

• Example:

Circle myCircle;

• Like everything else, you may declare and initialize (create) in the same step

ClassName objectRefVar = new ClassName();

• Example:

• Circle myCircle = new Circle(5);

ACCESSING OBJECT’S MEMBERS

• Referencing the object’s data:

• objectRefVar.data

• e.g., myCircle.radius

• Invoking the object’s method:

• objectRefVar.methodName(arguments)

• e.g., myCircle.getArea()

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle

null

Declare myCircle

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle

null

0xA

Create a circle

Circle

radius 5

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle

0xA (reference)

0xA

Assign memory

location to

reference variable

Circle

radius 5

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle yourCircle

0xA (reference) null

0xA

Declare yourCircle

Circle

radius 5

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle yourCircle

0xA (reference) null

0xA 0xB

Create a circle

Circle

radius 5

Circle

radius 1

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle yourCircle

0xA (reference) 0xB

0xA 0xB

Assign memory

location to

reference variable

Circle

radius 5

Circle

radius 1

TRACING

1.Circle myCircle = new Circle(5.0);

2.Circle yourCircle = new Circle();

3.yourCircle.radius = 100;

Memory

myCircle yourCircle

0xA (reference) 0xB

0xA 0xB

Change radius in

your circle

(code assumes

radius is public)

Circle

radius 5

Circle

radius 100

CAUTION

• Recall that you use the following to invoke a method in the Math class

• Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

• Can you invoke getArea() using Circle.getArea()?

• The answer is no. All the methods used before this chapter are static methods, which are

defined using the static keyword. However, getArea() is non-static. It must be

invoked from an object using

• objectRefVar.methodName(arguments) (e.g., myCircle.getArea()).

• More on this later

DATA FIELDS

• Unlike local variables, data fields are

initialized with default values (if nothing

else is specified)

• The data fields can be of reference

types. For example, the following

Student class contains a data field

name of the String type.

• What would this look like in memory?

1. public class Student {

2. String name; //default value null

3. int age; //default value 0

4. boolean isScienceMajor;

//default value false

5. char gender; //default value '\u0000'

6. }

THE NULL VALUE

• When a reference variable does not reference any object, the data field

holds a special literal value, null.

• Null is typically the literal memory address 0x0 or integer value 0

EXAMPLE
BOUNCING BALL

PROGRAM ALONG

EXAMPLE: BOUNCING BALL IN UNIT SQUARE

• Bouncing ball. Model a bouncing ball moving in the unit square with constant

velocity.

• Position x, y

• Velocity x, y

• Radius

• Simple movement model

• position’ = position + velocity

EXAMPLE: BOUNCING BALL IN UNIT SQUARE

1. public class Ball {

2. private double rx, ry;

3. private double vx, vy;

4. private double radius;

5.
6. public Ball() {

7. rx = ry = 0.5;

8. vx = 0.015 - Math.random() * 0.03;

9. vy = 0.015 - Math.random() * 0.03;

10. radius = 0.01 + Math.random() * 0.01;

11. }

12.
13. public void move() {

14. if ((rx + vx > 1.0) || (rx + vx < 0.0)) vx = -vx;

15. if ((ry + vy > 1.0) || (ry + vy < 0.0)) vy = -vy;

16. rx = rx + vx; ry = ry + vy;

17. }

18.
19. public void draw() {

20. StdDraw.filledCircle(rx, ry, radius);

21. }

22. }

OBJECT POINTERS – “REFERENCES”

• Object reference.

• Allow client to manipulate an object as a single entity.

• Essentially a machine address (pointer).

1. Ball b1 = new Ball();

2. b1.move();

3. b1.move();

4.

5. Ball b2 = new Ball();

6. b2.move();

7.

8. b2 = b1;

9. b2.move();

Address Value

0x0 0

0x1 0

0x2 0

0x3 0

0x4 0

0x5 0

0x6 0

0x7 0

0x8 0

0x9 0

0xA 0

0xB 0

0xC 0

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.5

0x1 0.5

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0

0x8 0

0x9 0

0xA 0

0xB 0

0xC 0

b1

0x0

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.55

0x1 0.51

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0

0x8 0

0x9 0

0xA 0

0xB 0

0xC 0

b1

0x0

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.60

0x1 0.52

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0

0x8 0

0x9 0

0xA 0

0xB 0

0xC 0

b1

0x0

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.60

0x1 0.52

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0.5

0x8 0.5

0x9 0.07

0xA 0.04

0xB 0.04

0xC 0

b1

0x0

B2

0x7

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.60

0x1 0.52

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0.57

0x8 0.54

0x9 0.07

0xA 0.04

0xB 0.04

0xC 0

b1

0x0

B2

0x7

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.60

0x1 0.52

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0.57

0x8 0.54

0x9 0.07

0xA 0.04

0xB 0.04

0xC 0

b1

0x0

B2

0x0

TRACING

1.Ball b1 = new Ball();

2.b1.move();

3.b1.move();

4.

5.Ball b2 = new Ball();

6.b2.move();

7.

8.b2 = b1;

9.b2.move();

Address Value

0x0 0.65

0x1 0.53

0x2 0.05

0x3 0.01

0x4 0.03

0x5 0

0x6 0

0x7 0.57

0x8 0.54

0x9 0.07

0xA 0.04

0xB 0.04

0xC 0

b1

0x0

B2

0x0

NEW ABSTRACTION VECTOR

• We can modify our code to create an abstraction for vector

public class Vector {

private double x, y;

public Vector(double a, double b) {

x = a; y = b;

}

public Vector(Vector other) { //Note. This is a copy constructor

x = other.x; y = other.y;

}

public double x() {return x;}

public double y() {return y;}

public Vector add(Vector other) {

return new Vector(x + other.x, y + other.y);

}

public void addeq(Vector other) {

x += other.x; y += other.y;

}

}

UPDATED BALL

1. public class Ball {

2. private Vector pos; //points are vectors from the origin

3. private Vector vel;

4. private double radius;

5.
6. public Ball() {

7. pos = new Vector(0.5, 0.5);

8. vel = new Vector(0.015 – Math.random() * 0.03, 0.015 – Math.random() * 0.03);

9. radius = 0.01 + Math.random() * 0.01;

10. }

11.
12. public void move() {

13. if (pos.x()+vel.x() > 1.0 || pos.x()+vel.x() < 0.0) vel = new Vector(-vel.x(), vel.y());

14. if (pos.y()+vel.y() > 1.0 || pos.y()+vel.y() < 0.0) vel = new Vector(vel.x(), -vel.y());

15. pos.addeq(vel);

16. }

17.
18. public void draw() {

19. StdDraw.filledCircle(pos.x(), pos.y(), radius);

20. }

21. }

ASSIGNMENT
PRIMITIVE DATA TYPES VS REFERENCE VARIABLE TYPES

i

Primitive type assignment i = j

Before:

 1

 j

2

i

After:

 2

 j

2

c1

Object type assignment c1 = c2

Before:

 c2

c1

After:

c2

c1: Circle

radius = 5

C2: Circle

radius = 9

c1: Circle

radius = 5

C2: Circle

radius = 9

GARBAGE COLLECTION

• As shown in the previous figure, after the assignment statement c1 = c2, c1

points to the same object referenced by c2. The object previously referenced

by c1 is no longer referenced. This object is known as garbage. Garbage is

automatically collected by JVM.

• TIP: If you know that an object is no longer needed, you can explicitly assign

null to a reference variable for the object. The JVM will automatically collect

the space if the object is not referenced by any variable.

INSTANCE VS STATIC

• Instance – a, or relating to a, specific object’s value

• Instance variables belong to a specific instance.

• Instance methods are invoked by an instance of the class.

• Static – not a, or relating to a, specific object’s value (related to the type). Uses the static

keyword

• Static variables are shared by all the instances of the class.

• Static methods are not tied to a specific object.

VISIBILITY MODIFIERS AND
ACCESSOR/MUTATOR METHODS

• A visibility modifier defines the scope of a variable/method and enforces

encapsulation (data hiding) in objects

• public – the class, data, or method is visible to any class in any package.

• private – the data or methods can be accessed only by the declaring class.

• By default (no modifier), the class, variable, or method can be accessed by any class

in the same package (in between public and private)

• Typically, get and set methods are provided to read and modify private properties.

EXAMPLE OF PRIVATE VISIBILITY

• An object cannot access its private members, as shown in (b). It is OK, however,

if the object is declared in its own class, as shown in (a).

WHY DATA FIELDS SHOULD BE PRIVATE?

• Promotes encapsulation

• To protect data.

• To make code easy to maintain.

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObjects(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

The - sign indicates

private modifier

PASSING OBJECTS TO METHODS

• Recall – all parameters to functions are passed-by-value in Java

• Passing-by-value for primitive type value (the value is copied to the parameter)

• Passing-by-value for reference type value (the value is the reference to the object)

public static void printArea(

Circle c, int times) {

for(int i = 0; i < times; ++i)

System.out.println(

c.getArea());

}

public static void main(

String[] args) {

Circle myCircle = new Circle();

printArea(5, myCircle);

}

ARRAY OF OBJECTS

• Circle[] circleArray =

new Circle[10];

• An array of objects is actually an array of

reference variables

• Invoking

circleArray[1].getArea()

involves two levels of referencing.

circleArray references to the entire

array. circleArray[1] references to

a Circle object.

EXAMPLE
BOUNCING BALL

PROGRAM ALONG

CREATING MANY OBJECTS

• Each object is a data type value.

• Use new to invoke constructor and create each one.

• Ex: create N bouncing balls and animate them.

1. public class BouncingBalls {

2. public static void main(String[] args) {

3. int N = Integer.parseInt(args[0]);

4. Ball balls[] = new Ball[N];

5. for (int i = 0; i < N; i++)

6. balls[i] = new Ball();

7.
8. while(true) {

9. StdDraw.clear();

10. for (int i = 0; i < N; i++) {

11. balls[i].move();

12. balls[i].draw();

13. }

14. StdDraw.show(20);

15. }

16. }

17. }

ADD GRAVITY!

• Alter velocity by an acceleration due to gravity before the position:

1. public void move() {

2. if (pos.x()+vel.x() > 1.0 || pos.x()+vel.x() < 0.0)

3. vel = new Vector(-vel.x(), vel.y());

4. if (pos.y()+vel.y() > 1.0 || pos.y()+vel.y() < 0.0)

5. vel = new Vector(vel.x(), -vel.y());

6. vel.addeq(new Vector(0.0, -0.05));

7. pos.addeq(vel);

8. }

SCOPE OF VARIABLES

• Recall – scope is the lifetime of a variable. It dictates where you as the

programmer may refer to the identifier (name) in code

• Rule – The scope of instance and static variables is the entire class (including inside of any

method). They can be declared anywhere inside a class.

• Rule – The scope of a local variable starts from its declaration and continues to the end

of the block that contains the variable. A local variable must be initialized explicitly

before it can be used.

THE THIS KEYWORD

• The this keyword is the name of a reference that refers to an object itself.

One common use of the this keyword is reference a class’s hidden data fields.

• Another common use of the this keyword to enable a constructor to invoke

another constructor of the same class.

Circle

radius: 10

this

EXAMPLE
REFERENCE THE HIDDEN DATA FIELDS

public class F {

 private int i = 5;

 private static double k = 0;

 void setI(int i) {

 this.i = i;

 }

 static void setK(double k) {

 F.k = k;

 }

}

Suppose that f1 and f2 are two objects of F.

F f1 = new F(); F f2 = new F();

Invoking f1.setI(10) is to execute

 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute

 this.i = 45, where this refers f2

CALLING OVERLOADED CONSTRUCTOR

public class Circle {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 public Circle() {

 this(1.0);

 }

 public double getArea() {

 return this.radius * this.radius * Math.PI;

 }

}

Every instance variable belongs to an instance represented by this,

which is normally omitted

this must be explicitly used to reference the data

field radius of the object being constructed

this is used to invoke another constructor

Or rename the parameter!

IMMUTABLE OBJECTS AND CLASSES

• If the contents of an object cannot be changed once the object is created, the

object is immutable and its class is called an immutable class.

• If you delete the set method in the Circle class in Listing 8.10, the class would be

immutable because radius is private and cannot be changed without a set method.

• A class with all private data fields and without mutators is not necessarily

immutable. For example, the following class Student has all private data fields

and no mutators, but it is mutable.

EXAMPLE
STUDENT IS STILL MUTABLE, HOW?

1. public class Student {

2. private int id;

3. private BirthDate birthdate;

4. public Student(int ssn, int year,

5. int month, int day) {

6. id = ssn;

7. birthDate = new BirthDate(

year, month, day);

8. }

9. public int getId() {

10. return id;

11. }

12. public BirthDate getBirthDate() {

13. return birthDate;

14. }

15.}

1. public class BirthDate {

2. private int year;

3. private int month;

4. private int day;

5. public BirthDate(int newYear,

6. int newMonth, int newDay) {

7. year = newYear;

8. month = newMonth;

9. day = newDay;

10. }

11. public void setYear(int newYear) {

12. year = newYear;

13. }

14.}

WHAT CLASS IS IMMUTABLE?

• For a class to be immutable, it must mark all data fields private and provide

no mutator methods and no accessor methods that would return a reference to

a mutable data field object.

69

IMMUTABLE WRAPPER CLASSES

• Boolean

• Character

• Short

• Byte

• Integer

• Long

• Float

• Double

• String

• All are immutable without a no-arg constructor

• All provide limits of their data types (e.g.,

Integer.MAX_VALUE and

Double.POSITIVE_INFINITY)

• All provide functions to convert between each

other (e.g., Integer.parseInt() and

String.valueOf())

• Since Java 5, primitive types can be

automatically be converted to their immutable

class counterpart (called boxing)

EXAMPLE
TURTLE GRAPHICS

TURTLE GRAPHICS

• Goal. Create a data type to manipulate a turtle

moving in the plane.

• Set of values. Location and orientation of turtle.

• API.

1. // draw a square

2. Turtle turtle =

new Turtle(0.0, 0.0, 0.0);

3. turtle.goForward(1.0);

4. turtle.turnLeft(90.0);

5. turtle.goForward(1.0);

6. turtle.turnLeft(90.0);

7. turtle.goForward(1.0);

8. turtle.turnLeft(90.0);

9. turtle.goForward(1.0);

10.turtle.turnLeft(90.0);

TURTLE GRAPHICS

1. public class Turtle {

2. private double x, y; // turtle is at (x, y)

3. private double angle; // facing this direction

4.
5. public Turtle(double x0, double y0, double a0) {

6. x = x0; y = y0; angle = a0;

7. }

8.
9. public void turnLeft(double delta) {

10. angle += delta;

11. }

12.
13. public void goForward(double d) {

14. double oldx = x, oldy = y;

15. x += d * Math.cos(Math.toRadians(angle));

16. y += d * Math.sin(Math.toRadians(angle));

17. StdDraw.line(oldx, oldy, x, y);

18. }

19. }

N-GON

1. public class Ngon {

2. public static void main(String[] args) {

3. int N = Integer.parseInt(args[0]);

4. double angle = 360.0 / N;

5. double step = Math.sin(Math.toRadians(angle/2.0));

6. Turtle turtle = new Turtle(0.5, 0, angle/2.0);

7. for (int i = 0; i < N; i++) {

8. turtle.goForward(step);

9. turtle.turnLeft(angle);

10. }

11. }

12.}

3 7 1440

SPIRAL

1. public class Spiral {

2. public static void main(String[] args) {

3. int N = Integer.parseInt(args[0]);

4. double decay = Double.parseDouble(args[1]);

5. double angle = 360.0 / N;

6. double step = Math.sin(Math.toRadians(angle/2.0));

7. Turtle turtle = new Turtle(0.5, 0, angle/2.0);

8. for (int i = 0; i < 10 * N; i++) {

9. step /= decay;

10. turtle.goForward(step);

11. turtle.turnLeft(angle);

12. }

13. }

14.}

3 1.0 3 1.2 1440 1.00004 1440 1.0004

PRACTICE

• Grid world!

• Create an object for a player which has an image and a position

• Can only move in the cardinal directions

• Create an object for a Grid world

• Manages the players movements

• Allow the player to enter a key (a,s,d,w) to walk within the grid

• If you finish, show me and then work on the next homework assignment.

• You have ~1hour for this.

a a P a a a a a

