
CHAPTER 12 
EXCEPTION HANDLING
AND TEXT IO
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH 

INTRODUCTION TO JAVA PROGRAMMING, LIANG (PEARSON 2014)



MOTIVATIONS

• When a program runs into a runtime error, the program terminates 

abnormally. How can you handle the runtime error so that the program can 

continue to run or terminate gracefully? 

• Example

• You are working on Microsoft Word, and you try to open a file that does not exist OR is 

an incorrectly formatted .doc or .docx file (like someone tampered with it). What should 

happen?

• (a) Microsoft crashes

• (b) Microsoft alerts you of the issue

• (c) Forget Microsoft, Apple is superior!



EXCEPTION TYPES

 

LinkageError 

Error 

Throwable 

ClassNotFoundException 

VirtualMachineError 

IOException 

Exception 

RuntimeException 

Object 

ArithmeticException 

NullPointerException 

IndexOutOfBoundsException 

Many more classes 

Many more classes 

Many more classes 

IllegalArgumentException 



SYSTEM ERRORS

 

LinkageError 

Error 

Throwable 

ClassNotFoundException 

VirtualMachineError 

IOException 

Exception 

RuntimeException 

Object 

ArithmeticException 

NullPointerException 

IndexOutOfBoundsException 

Many more classes 

Many more classes 

Many more classes 

IllegalArgumentException 

System errors are thrown by JVM and 

represented in the Error class. The Error class 

describes internal system errors. Such errors 

rarely occur. If one does, there is little you can 

do beyond notifying the user and trying to 

terminate the program gracefully. 



EXCEPTIONS

 

LinkageError 

Error 

Throwable 

ClassNotFoundException 

VirtualMachineError 

IOException 

Exception 

RuntimeException 

Object 

ArithmeticException 

NullPointerException 

IndexOutOfBoundsException 

Many more classes 

Many more classes 

Many more classes 

IllegalArgumentException 

Exception describes errors caused by your 

program and external circumstances. These 

errors can be caught and handled by your 

program. 



EXCEPTIONS

 

LinkageError 

Error 

Throwable 

ClassNotFoundException 

VirtualMachineError 

IOException 

Exception 

RuntimeException 

Object 

ArithmeticException 

NullPointerException 

IndexOutOfBoundsException 

Many more classes 

Many more classes 

Many more classes 

IllegalArgumentException 

RuntimeException is caused by programming 

errors, such as bad casting, accessing an out-

of-bounds array, and numeric errors.



CHECKED EXCEPTIONS VS. 
UNCHECKED EXCEPTIONS

• RuntimeException, Error and their subclasses are known as 

unchecked exceptions. All other exceptions are known as checked 

exceptions, meaning that the compiler forces the programmer to check and 

deal with the exceptions. 

• In most cases, unchecked exceptions reflect programming logic errors that are 

not recoverable. These are the logic errors that should be corrected in the 

program. Unchecked exceptions can occur anywhere in the program. To avoid 

cumbersome overuse of try-catch blocks, Java does not mandate you to write 

code to catch unchecked exceptions.



DECLARING, THROWING, AND CATCHING 
EXCEPTIONS

 

method1() { 

 

  try { 

    invoke method2; 

  } 

  catch (Exception ex) { 

    Process exception; 

  } 

} 

method2() throws Exception { 

 

  if (an error occurs) { 

 

    throw new Exception(); 

  } 

} 

catch exception throw exception 

declare exception 



DECLARING EXCEPTIONS

• Every method must state the types of checked exceptions it might throw. This is 

known as declaring exceptions. 

• public void myMethod() 
throws IOException

• public void myMethod() 
throws IOException, OtherException



THROWING EXCEPTIONS

• When the program detects an error, the program can create an instance of an 

appropriate exception type and throw it. This is known as throwing an 

exception. Here is an example, 

• throw new Exception(); 

• Exception ex = new Exception();

throw ex;



THROWING EXCEPTIONS EXAMPLE

1. /** Set a new radius */

2. public void setRadius(double newRadius) 

3. throws IllegalArgumentException {

4. if (newRadius >= 0)

5. radius =  newRadius;

6. else

7. throw new IllegalArgumentException(

8. "Radius cannot be negative");

9. }



CATCHING EXCEPTIONS

1. try {

2. statements;  // Statements that may throw exceptions

3. }

4. catch (Exception1 exVar1) {

5. handler for exception1;

6. }

7. catch (Exception2 exVar2) { 

8. handler for exception2;

9. }

10. ...

11. catch (ExceptionN exVar3) {

12. handler for exceptionN;

13. } 



CATCH OR DECLARE CHECKED EXCEPTIONS

• Suppose p2 is defined as follows:

 
void p2() throws IOException { 

  if (a file does not exist) { 

     throw new IOException("File does not exist"); 

  } 

   

  ... 

} 

 



CATCH OR DECLARE CHECKED EXCEPTIONS

• Java forces you to deal with checked exceptions. If a method declares a 

checked exception, you must invoke it in a try-catch block or declare to throw 

the exception in the calling method. For example, suppose that method p1 

invokes method p2 and p2 may throw a checked exception (e.g., 

IOException), you have to write the code as shown in (a) or (b).

 
void p1() { 

  try { 

    p2(); 

  } 

  catch (IOException ex) { 

    ... 

  } 

} 

 
(a) 

 
(b)  

 

void p1() throws IOException { 

 

  p2(); 

 

} 

 



THE FINALLY CLAUSE

1.try {  

2. statements;

3.}

4.catch(Exception ex) { 

5. handling ex; 

6.}

7.finally { 

8. finalStatements; 

9.}



CAUTIONS WHEN USING EXCEPTIONS

• Exception handling separates error-handling code from normal programming 

tasks, thus making programs easier to read and to modify. Be aware, 

however, that exception handling usually requires more time and resources 

because it requires instantiating a new exception object, rolling back the call 

stack, and propagating the errors to the calling methods.



WHEN TO THROW EXCEPTIONS

• An exception occurs in a method. If you want the exception to be processed by 

its caller, you should create an exception object and throw it. If you can 

handle the exception in the method where it occurs, there is no need to throw 

it.

• Often you can handle exception with if-else statements like we have 

previously seen. In this case, there is no need to throw.



INPUT AND OUTPUT

• Input devices

• Output devices.

• Goal.  Java programs that interact with the outside world.

• Java Libraries support these interactions

• We use the Operating System (OS) to connect our program to them

Display Speakers

Keyboard Digital cameraHard 

drive

Printer

Mouse Network

Hard 

drive

Network MP3 

Player

Microphone



WHAT HAVE WE SEEN SO FAR?

• Standard output.

• The OS output stream for text

• By default, standard output is sent to 

Terminal.

• Example: System.out.println() goes to 

standard output.

• Standard input.

• The OS input stream for text

• By default, standard input is received 

from the Terminal.

• Example: Scanner

• “Standard Draw.”

• Really a wrapper for Java’s GUI libraries

• Output to a window instead of a terminal

• Example: Draw a circle on the screen



FILE INPUT AND OUTPUT



FILE INPUT

• We can reuse Scanner!

• Instead of “scanning” System.in, we scan a File.

• However we must:

• Import Scanner, File, and 

FileNotFoundException

• Modify our main function to handle a 

FileNotFoundException

1. Scanner in = new Scanner(

new File(“myfile.txt”));

2. in.nextInt();

3. in.nextDouble();

4. in.hasNext();

1. import java.io.File;

2. import java.io.FileNotFoundException;

3. import java.util.Scanner;

4.
5. public class MyProgram {

6. public static void main(String[] args)

throws FileNotFoundException {

7. //Do something!

8. }

9. }

• Note – alternative to throws, we could have done a try-catch

block



FILE OUTPUT

• We can use PrintWriter

• Offers print, println, printf just 

like System.out

1. PrintWriter out = new

PrintWriter(“MyFile.txt”);

2. out.println(“Hello FileIO

World!”);

• Similarly we need to:

• Import PrintWriter and 

FileNotFoundException

1. import java.io.PrintWriter;

• Modify main to handle/throws 

FileNotFoundException



FILE INPUT/OUTPUT CAVEATS

• Always call close after you are done using 

Scanner or PrintWriter

1. Scanner in = 

new Scanner(new

File(“MyFile.txt”));

2. //Use the Scanner as much 

//as you want

3. in.close();

• Call flush often on PrintWriter to 

ensure all output gets into the file.

1. PrintWriter out = new

PrintWriter(“MyFile.txt”);

2. //Use the PrintWriter as much 

//as you want

3. out.flush(); //Always flush 

after use!

4. out.close();



FOR MORE INFORMATION

• Google

• API

• Tutorials

• StackOverflow

• Practice, Practice, Practice!



EXERCISE – WORK IN TRIPLETS



EXERCISE

1. Write a program that will generate 𝑁 random cirlces, where 𝑁 ∈ [3, 20], the 

center 𝑥, 𝑦 points between −10, 10 , and the radius is between 1, 4 . Write 

the circles to a file – first line is 𝑁, each line after is the circle defined by 𝑥, 𝑦, and 

𝑟

2. Write a program that reads your file and shows it to the user using StdDraw. Use a 

random color to show the outline and a different random color to fill the polygon.

3. Augment your programs to

1. Allow random rectangles as well. Randomly select circles/rectangles with 0.5 probability


