
CHAPTER 4
MATHEMATICAL FUNCTIONS,
CHARACTERS, STRINGS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO JAVA PROGRAMMING, LIANG (PEARSON 2014)

MATHEMATICAL FUNCTIONS

• Java provides many useful methods in the Math class for performing common

mathematical functions.

• In order to use them we need to understand:

• What a method is

• How to use methods

• Where we look up possible functions to use

METHODS

• Methods are subroutines that we would like to (re)use again and again in

code

• For example, would you like a method to compute 𝑥 or write a lengthy

algorithm every time you wish to use it?

• The Java library give us many useful methods. Some we have seen:

• Scanner

• If you have read - Math

INTERPRETING METHODS

• Consider the following from the Math library:

double sqrt(double x);

• sqrt is an identifier, i.e., a name, for this method

• double x is called a parameter, or an argument. This is the input to the method.

• double is the type of data output by the method

• In a few weeks, we will learn to write our own methods. For now, we need to know

how to use them.

INVOKING A METHOD

• A method is invoked, or called, in code:

• double x = Math.sqrt(2); //invoke/call and save result

• double y = Math.sqrt(2)/2; //use inside of an expression

INVOKING A METHOD

• Difference between Math and Scanner

• Methods sometimes depend on the value of an object/class and sometimes they do

not. Common math functions, like sqrt, do not need to know anything besides the

parameter. However, other things like Scanner needs to know what it is scanning, so

we invoke methods from a variable instead:

• Scanner in = new Scanner(System.in); //Make a variable

• double x = in.nextDouble(); //Use the variable

READING AN API

• API or Application Program Interface tells a programmer how to use a class or

piece of code

• Look at one and let us interpret

• Java Math API

https://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

THE MATH CLASS

• Class constants:

• PI (with Math.PI)

• E

• Class methods:

• Trigonometric Methods (examples: Math.sin(x), Math.cos(x))

• Exponent Methods (examples: Math.log(x), Math.pow(x, y))

• Rounding Methods (examples: Math.floor(x), Math.round(x))

• min, max, abs, and random Methods (examples: Math.min(x, y), Math.random())

MATH.RANDOM()

• Generates a random double value greater than or equal to 0.0 and less than

1.0 (0 <= Math.random() < 1.0).

(int)(Math.random() * 10)
Returns a random integer

between 0 and 9.

50 + (int)(Math.random() * 50)
Returns a random integer

between 50 and 99.

a + Math.random() * b

Returns a random number between

a and a + b, excluding a + b.

EXERCISE

• With a partner, lets make a program that draws a pentagon inscribed in a circle

• Recall the coordinate system in StdDraw is a box from (0, 0) to (1, 1). Change with:

• StdDraw.setXscale(-1.5*r, 1.5*r)

• StdDraw.setYScale(-1.5*r, 1.5*r)

• To draw a circle use: StdDraw.circle(x, y, r);

• Recall for a point on a circle at angle 𝜃, 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃

CHARACTER DATA TYPE

• Characters are symbols used predominantly for textual information

• char letter = 'A'; //ASCII

• char numChar = '4'; //ASCII, ASCII is one mapping from

binary value to symbols. Found in Appendix B of book

• char letter = '\u0041'; //Unicode, mapping that supports

other languages characters

• char numChar = '\u0034'; //Unicode

• Literals are denoted with a single quote

ESCAPE SEQUENCES FOR SPECIAL CHARACTERS

METHODS IN THE CHARACTER CLASS

Method Description

isDigit(ch) Returns true if the specified character is a digit.

isLetter(ch) Returns true if the specified character is a letter.

isLetterOfDigit(ch) Returns true if the specified character is a letter or digit.

isLowerCase(ch) Returns true if the specified character is a lowercase letter.

isUpperCase(ch) Returns true if the specified character is an uppercase letter.

toLowerCase(ch) Returns the lowercase of the specified character.

toUpperCase(ch) Returns the uppercase of the specified character.

THE STRING TYPE

• The char type only represents one character. To represent a message (string of

characters), use the data type called String. For example,

String message = "Welcome to Java";

• Note - String is actually a predefined class in the Java library just like the System class

and Scanner class. The String type is not a primitive type. It is known as a reference

type. Any Java class can be used as a reference type for a variable. Reference data

types will be thoroughly discussed in Chapter 9, “Objects and Classes.” For the time

being, you just need to know how to declare a String variable, how to assign a string to

the variable, how to concatenate strings, and to perform simple operations for strings.

SIMPLE METHODS FOR STRING OBJECTS

Method Description

Returns the number of characters in this string.

Returns the character at the specified index from this string.

Returns a new string that concatenates this string with string s1.

Returns a new string with all letters in uppercase.

Returns a new string with all letters in lowercase.

Returns a new string with whitespace characters trimmed on both sides.

length()

charAt(index)

concat(s1)

toUpperCase()

toLowerCase()

trim()

GETTING STRING LENGTH

1.String message = "Welcome to Java";

2.System.out.println("The length of " + message +

" is " + message.length());

GETTING CHARACTERS FROM A STRING

STRING CONCATENATION

1. //String s3 = s1.concat(s2); or String s3 = s1 + s2;

2.

3. // Three strings are concatenated

4. String message = "Welcome " + "to " + "Java";

5.

6. // String Chapter is concatenated with number 2

7. String s = "Chapter" + 2; // s becomes Chapter2

8.

9. // String Supplement is concatenated with character B

10.String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

READING A STRING FROM THE CONSOLE

1. Scanner input = new Scanner(System.in);

2. System.out.print("Enter three words separated by spaces: ");

3. String s1 = input.next();

4. String s2 = input.next();

5. String s3 = input.next();

6. System.out.println("s1 is " + s1);

7. System.out.println("s2 is " + s2);

8. System.out.println("s3 is " + s3);

OBTAINING SUBSTRINGS

Method Description

Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and

extends to the character at index endIndex – 1, as shown in Figure 9.6.

Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,

endIndex)

CONVERSION BETWEEN STRINGS AND NUMBERS

1. //String to a number

2. int intValue = Integer.parseInt(intString);

3. double doubleValue = Double.parseDouble(doubleString);

4. //Number to a string

5. String s = String.valueOf(number);

