
CMSC 150 
INTRODUCTION TO COMPUTING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH INTRODUCTION TO PROGRAMMING IN JAVA: AN 
INTERDISCIPLINARY APPROACH, SEDGEWICK AND WAYNE (PEARSON ADDISON-WESLEY 2007)

LECTURE 11

• POLYMORPHISM

• ABSTRACT CLASSES

• INTERFACES



REVIEW
DATA TYPES AND OBJECT-ORIENTED PROGRAMMING

• Data type. Object. Set of values and operations on those values.

• Object-oriented Programming – design principle for large programs

• Composition/Abstraction – Modeling objects (HAS-A relationship)

• Encapsulation – combining data and operations (methods); data hiding from misuse 

(private vs public)

• Inheritance – Types and sub-types (IS-A relationship)

• Polymorphism – Abstract types that can act as other types (for algorithm design)



EXAMPLE
SHAPES

• Recall our shape hierarchy

• Shape will have the functions

• double area();

• double perimeter();

• Specifics are defined in the sub 

classes

Shape

• Color

Circle

• Radius

Rectangle

• Width, Height



POLYMORPHISM

• Wikipedia – “the provision of a single interface to entities of different types”

• “one name, many forms”

• Polymorphism realistically implies that a variable of a superclass can refer 

to a value of a subclass

Shape circle = new Circle(5, Color.red);

System.out.println(circle.area());



WHY WOULD YOU EVER DO THIS?

• Allow types to be defined at runtime, instead of at compile time:

1. Scanner s = new Scanner(System.in);

2. Shape shape = null;

3. String tag = s.next();

4. if(tag.equals(“Circle”)) { //user wants a circle

5. double r = s.nextDouble();

6. shape = new Circle(r, Color.red);

7. }

8. else if(tag.equals(“Rectangle”)) { //User wants a rectangle

9. double w = s.nextDouble(), h = s.nextDouble();

10. shape = new Rectangle(w, h, Color.red);

11. }
12. System.out.println(“Area: ” + shape.area()); //works no matter what!



WHY WOULD YOU EVER DO THIS?

• Arrays can only store one type

1.Circle[] circles; //all circles

2.Rectangle[] rects; //all rectangles

3.Shape[] shapes; //depends on subtypes! Can have 

some circles and some rectangles.



WHY WOULD YOU EVER DO THIS?

• Lets say we have an array of Shape shapes then we can do something like:

1.double total = 0;

2.for(int i = 0; i < shapes.length; ++i)

3. total += shapes[i].area(); //Uses specific 

instance’s subtype’s function

4.return total;



DYNAMIC BINDING

• When defining a variable of a super type as a sub type, e.g.,

Shape s = new Circle(5, Color.red);

• Shape is the declared type

• Circle is the actual type

• Dynamic binding relates the correct implementation of the functions to the variable

• The declared type says what functions and public entities can be accessed

• Note that by declaring s as Shape, all of the additional public API functions/data cannot be 

accessed, e.g., getRadius(). Lucky for us though…



TYPE CASTING

• Can use casting to get back to the actual type:

Shape s = new Circle(5, Color.red);

Circle c = (Circle)s; //Only the pointer is copied

c.specificFunctionInCircleOnly();

• Casting to a subclass is referred to as downcasting and must be done 

explicitely

• Casting to a superclass is referred to as upcasting and will be done 

implicitely

• Determining if an instance can be downcast is often necessary. Can use the 

instanceof keyword



ABSTRACT CLASSES

• In modeling, sometimes we don’t want to allow types to be defined:

Shape s = new Shape(Color.red); //Makes no sense. What is s really?

• We can use abstract classes to facilitate this to provide better protection to other software developers on our 

team. Also specified interface (API) requirements of subtypes.

1. public abstract class Shape { //Abstract here disbars the code above. 

2. //No “new” is allowed on this type.

3. protected Shape(Color c) {…} //Constructor is protected because 

4. //nothing but subtypes will access it

5. …

6. public abstract double area(); //If a function is abstract no

7. //definition needs to be provided

8. public abstract double perimeter(); //Also subtypes are now required

9. //to define them!

10.}



SOME INTERESTING POINTS ON ABSTRACT

• An abstract method cannot be contained in a non abstract class

• If a subclass of an abstract superclass does not implement all of the abstract 

methods, then it must also be declared as abstract

• Cannot use new on an abstract type, but constructors can be defined (for use 

with super). Also can still use the abstract type for polymorphism!

• An abstract class does not require abstract methods

• A subclass can be abstract even if the superclass is concrete (non abstract)



INTERFACES

• An interface is a class-like construct that contains only constants and abstract methods 

(almost like a purely abstract class).

1.public interface AreaComputation { //Note “interface”

2. //not “class”

3. public static final double PI = Math.PI;

4. public abstract area();

5.}



INTERFACES

• Cannot have constructors

• All variables must be public static final

• All methods must be public abstract

• Useful for writing algorithms for searching or sorting (these need comparison), 

i.e., Comparable things (any object “implementing” the Comparable interface)

• Used to support multiple inheritance



INTERFACES

• To inherit an interface:

public class Shape implements AreaComputation, 

PerimeterComputation {

…}

• Implementing an interface requires implementation of all of the abstract methods, or 

declaring as an abstract class.

• Interfaces commonly used as a weaker is-a relationship, specifically is-kind-of 

referring to possessing certain properties only

• Oddly, interfaces can “extend” other interfaces



SUMMARY OF OOP

• OOP is a methodology to model things in 

our world and their interactions

• Used for solving problems

• Used in creating useful applications

• Do not think this is the end of the story…

• We only went over the core principles of 

OOP

• There are more advanced programming 

techniques

• There are many differences in OOP between 

languages


