
CMSC 150
INTRODUCTION TO COMPUTING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH INTRODUCTION TO PROGRAMMING IN JAVA: AN
INTERDISCIPLINARY APPROACH, SEDGEWICK AND WAYNE (PEARSON ADDISON-WESLEY 2007)

LECTURE 4

• ARRAYS

• MULTIDIMENSIONAL ARRAYS

MANY VARIABLES OF THE SAME TYPE

• Goal. 10 variables of the same type.

1. // tedious and error-prone

2. double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

3. a0 = 0.0;

4. a1 = 0.0;

5. a2 = 0.0;

6. a3 = 0.0;

7. a4 = 0.0;

8. a5 = 0.0;

9. a6 = 0.0;

10. a7 = 0.0;

11. a8 = 0.0;

12. a9 = 0.0;

13. …

14. a4 = 3.0;

15. …

16. a8 = 8.0;

17. …

18. double x = a4 + a8;

MANY VARIABLES OF THE SAME TYPE

• Goal. 10 variables of the same type.

1. // easy alternative

2. double[] a = new double[10];

3. …

4. a[4] = 3.0;

5. …

6. a[8] = 8.0;

7. …

8. double x = a[4] + a[8];

declares, creates, and

initializes

[stay tuned for details]

MANY VARIABLES OF THE SAME TYPE

• Goal. 1 million variables of the same type.

1. // scales to handle large arrays

2. double[] a = new double[1000000];

3. …

4. a[123456] = 3.0;

5. …

6. a[987654] = 8.0;

7. …

8. double x = a[123456] + a[987654];

ARRAYS

• Array. Indexed sequence of values of the same type

• Store and manipulate huge quantities of data.

• Examples.

• 52 playing cards in a deck

• 3 thousand undergrads at UR

• 140 characters per Tweet

• 4 billion nucleotides in a DNA strand

• 50 trillion cells in the human body

• 6.022𝑥1023 particles in a mole

Index Value

0 Captain America

1 Ironman

2 Thor

3 Hulk

4 Black Widow

5 Hawkeye

6 Nick Fury

7 Wannabe Avengerman

ARRAYS IN JAVA

• Java has special language support for

arrays.

• To make an array: declare, create, and

initialize it

• To access entry 𝑖 of array named 𝑎, use

𝑎 𝑖

• Array indices start at 0

1. int N = 10; // size of array

2. double[] a; // declare the array

3. a = new double[N]; // create the array

4. for (int i = 0; i < N; i++) // initialize the

5. a[i] = 0.0; // array all to 0.0

OR

1. double[] a = new double[10]; //declare, create,

2. // and initialize. Default will initialize to 0 for double.

VECTOR DOT PRODUCT

• Dot product. Given two vectors x[] and y[] of length N, their dot product is the sum of the

products of their corresponding components.

1. double[] x = { 0.3, 0.6, 0.1 }; //Another way to initialize

2. double[] y = { 0.5, 0.1, 0.4 };

3. int N = x.length;

4. double sum = 0.0;

5. for (int i = 0; i < N; i++) {

6. sum = sum + x[i]*y[i];

7. }

ARRAY-PROCESSING EXAMPLES

EXAMPLES: DECK OF CARDS

SETTING ARRAY VALUES AT COMPILE TIME

• Ex. Print a random card.

1. String[] rank = {

2. "2", "3", "4", "5", "6", "7", "8", "9",

3. "10", "Jack", "Queen", "King", "Ace"

4. };

5.
6. String[] suit = {

7. "Clubs", "Diamonds", "Hearts", "Spades"

8. };

9.
10. int i = (int) (Math.random() * 13); // between 0 and 12

11. int j = (int) (Math.random() * 4); // between 0 and 3

12.
13. System.out.println(rank[i] + " of " + suit[j]);

SETTING ARRAY VALUES AT RUN TIME

• Ex. Create a deck of playing cards and print them out.

1. String[] deck = new String[52]; //Default initialized to “”

2. for (int i = 0; i < 13; i++) //Reassign the values to something meaning full

3. for (int j = 0; j < 4; j++)

4. deck[4*i + j] = rank[i] + " of " + suit[j];

5. for (int i = 0; i < 52; i++)

6. System.out.println(deck[i]);

• Q. In what order does it output them?

• A. B.two of clubs

two of diamonds

two of hearts

two of spades

three of clubs

...

two of clubs

three of clubs

four of clubs

five of clubs

six of clubs

...

SHUFFLING

• Goal. Given an array, rearrange its elements in random order.

• Shuffling algorithm.

• In iteration i, pick random card from deck[i] through deck[N-1], with each card equally likely.

• Exchange it with deck[i].

1. int N = deck.length; //Use .length to know how many elements

2. for (int i = 0; i < N; i++) { //there are.

3. int r = i + (int) (Math.random() * (N-i)); //Random between 𝑖 and 𝑁 − 1
4. String t = deck[r]; //Swap

5. deck[r] = deck[i];

6. deck[i] = t;

7. }

SHUFFLING A DECK OF CARDS: PUTTING
EVERYTHING TOGETHER

1. public class Deck {

2. public static void main(String[] args) {

3. String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" }; //Define suits, ranks, and sizes

4. String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace" };

5. int SUITS = suit.length, RANKS = rank.length, N = SUITS * RANKS;

6.
7. String[] deck = new String[N]; //Build deck

8. for (int i = 0; i < RANKS; i++)

9. for (int j = 0; j < SUITS; j++)

10. deck[SUITS*i + j] = rank[i] + " of " + suit[j];

11.
12. for (int i = 0; i < N; i++) { //Shuffle

13. int r = i + (int) (Math.random() * (N-i));

14. String t = deck[r];

15. deck[r] = deck[i];

16. deck[i] = t;

17. }

18.
19. for (int i = 0; i < N; i++) //Print the deck

20. System.out.println(deck[i]);

21. }

22. }

STRINGS REVISITED

• Strings are arrays of char! Well sort of…

• Strings ‘underneath the hood’ are arrays of char, but we use them differently

• Java API for String

• Use charAt(i) instead of [i]

• Convert to char[] using toCharArray() and back to a String easily

String s = “Hello”;

char[] c = s.toCharArray();

String s2 = new String(c);

• Allows more, e.g., substring() which returns a portion of the String

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

EXERCISE – PARTNERS

• Write an algorithm/program to find the minimum, maximum, and average of

an array of doubles. Use a single loop!

MULTIDIMENSIONAL ARRAYS

TWO-DIMENSIONAL ARRAYS

• Two-dimensional arrays.

• Table of data for each experiment and outcome.

• Table of grades for each student and assignments.

• Pixels in an image

• Mathematical abstraction. Matrix.

• Java abstraction. 2D array.
Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

TWO-DIMENSIONAL ARRAYS IN JAVA

• Array access. Use a[i][j] to access entry in

row i and column j.

• Zero-based indexing. Row and column

indices start at 0.

1. int M = 10, N = 3;

2. double[][] a = new double[M][N];

3. for (int i = 0; i < M; i++)

4. for (int j = 0; j < N; j++)

5. a[i][j] = 0.0;

SETTING 2D ARRAY VALUES AT COMPILE TIME

• Initialize 2D array by listing values.

1. double[][] p = {

2. { .02, .92, .02, .02, .02 },

3. { .02, .02, .32, .32, .32 },

4. { .02, .02, .02, .92, .02 },

5. { .92, .02, .02, .02, .02 },

6. { .47, .02, .47, .02, .02 },

7. };

MATRIX ADDITION

• Matrix addition. Given two N-by-N

matrices a and b, define c to be the N-

by-N matrix where 𝑐 𝑖 𝑗 is the sum

𝑎 𝑖 𝑗 + 𝑏 𝑖 𝑗

1. double[][] c = new double[N][N];

2. for (int i = 0; i < N; i++)

3. for (int j = 0; j < N; j++)

4. c[i][j] = a[i][j] + b[i][j];

MATRIX MULTIPLICATION

• Matrix multiplication. Given two N-by-

N matrices a and b, define c to be the

N-by-N matrix where 𝑐 𝑖 𝑗 is the dot

product of the 𝑖th row of 𝑎 and the

𝑗th column of 𝑏 .

1. double[][] c = new double[N][N];

2. for (int i = 0; i < N; i++)

3. for (int j = 0; j < N; j++)

4. for (int k = 0; k < N; k++)

5. c[i][j] += a[i][k] * b[k][j];

ODDITIES OF MULTI-DIMENSIONAL ARRAYS

• A multidimensional array is considered

“ragged” if the columns do not have

equal lengths

1. int N = 10;

2. int[][] ragged = new int[N][];

3. for(int i = 1; i <= N; ++i)

4. ragged[i-1] = new int[i];

0

00

000

0000

00000

000000

0000000

00000000

000000000

0000000000

EXERCISE – PARTNERS

• Write an algorithm/program to transpose a Matrix. Transposing means that

each row becomes a column in a new matrix.

SUMMARY

• Arrays.

• Organized way to store huge quantities of data.

• Almost as easy to use as primitive types.

• Can directly access an element given its index.

http://imgs.xkcd.com/comics/donald_knuth.png

