
CMSC 150
INTRODUCTION TO COMPUTING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH INTRODUCTION TO PROGRAMMING IN JAVA: AN
INTERDISCIPLINARY APPROACH, SEDGEWICK AND WAYNE (PEARSON ADDISON-WESLEY 2007)

LECTURE 3

• IF, WHILE, FOR

• SCOPE

• NESTING

• OTHER CONTROL FLOW STATEMENTS

CONTROL FLOW

• Control flow.

• Sequence of statements that are actually executed in a program.

• Conditionals and loops: enable us to choreograph control flow.

statement 2

statement 1

statement 4

statement 3

boolean 2

true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control flow control flow with conditionals and loops

CONDITIONALS

LETS SAY YOU WANT TO BE A POLL WORKER FOR
A CAUCUS OR PRIMARY

• You have to sort people by their political party

• If a person is republican they take one ballot, otherwise they are democrat

and have a different ballot

• How could we automate this?

IF STATEMENT

• if statement. A common branching structure.

• Evaluate a boolean expression.

• If true, execute some statements.

• If false, execute other statements.

if (boolean expression) {

statement T;

}

else {

statement F;

}

can be any sequence

of statements

statement T

true false

boolean expression

statement F

IF STATEMENT

• Example of control flow with if

IF STATEMENT

• Ex. Take different action depending on value of variable.

1. public class Flip {

2. public static void main(String[] args) {

3. if (Math.random() < 0.5) System.out.println("Heads");

4. else System.out.println("Tails");

5. }

6. }

% java Flip

Heads

% java Flip

Heads

% java Flip

Tails

% java Flip

Heads

IF STATEMENT EXAMPLES

ACTIVITY – WITH A PARTNER

• Write an algorithm using if and else statements to output three numbers a, b, c in

sorted order. You don’t have to write valid Java. This is just called pseudocode, i.e.,

code-like statements

• Example pseudocode vs Java

Output a

vs

System.out.println(a);

• Or

𝑎 ← 0
vs

int a = 0;

ELSE IF STATEMENTS

• Can allow more than two options

with else-if statement

• Ex. Pay a certain tax rate

depending on income level.

1. double rate;

2. if (income < 47450) rate = 0.22;

3. else if (income < 114650) rate = 0.25;

4. else if (income < 174700) rate = 0.28;

5. else if (income < 311950) rate = 0.33;

6. else rate = 0.35;

5 mutually exclusive

alternatives…

Income Rate

0 – 47, 450 22%

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 – ∞ 35%

ELSE IF STATEMENTS

• Why didn’t we use this program? 1. double rate = 0.35;

2. if (income < 47450) rate = 0.22;

3. if (income < 114650) rate = 0.25;

4. if (income < 174700) rate = 0.28;

5. if (income < 311950) rate = 0.33;

5 mutually exclusive

alternatives…

Income Rate

0 – 47, 450 22%

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 – ∞ 35%

ACTIVITY

• Could we rework our algorithm to sort 3 numbers with else-if statements to

make it more clear?

EXERCISE – WITH A PARTNER

• Write a program that takes three integer command-line arguments and prints equal

if all three are equal, and not equal otherwise

• Add statements to your first program which ensure three and only three arguments

were given to the program. Output a good error message so that

“exception:ArrayIndexOutOfBounds” doesn’t occur and you know what went wrong in

your program. Hint: Use args.length to see how many arguments there are.

• Fix this java excerpt

if(x = b && x != a)

DoSomething();

THE WHILE LOOP

WHILE LOOP

• while loop. A common repetition structure.

• Evaluate a boolean expression.

• If true, execute some statements.

• Repeat.

while (boolean expression) {

statement 1;

statement 2;

}

statement 1

true

false

boolean expression

statement 2

loop continuation condition

loop body

WHILE LOOP: POWERS OF TWO

• Ex. Print powers of 2 that are ≤ 2𝑁.

• Increment 𝑖 from 0 to 𝑁.

• Double 𝑣 each time.

1. int i = 0;

2. int v = 1;

3. while (i <= N) {

4. System.out.println(i + " " + v);

5. i = i + 1;

6. v = 2 * v;

7. }

0 1

1 2

2 4

3 8

4 16

5 32

6 64

0 1 true

i v i <= N

1 2 true

2 4 true

3 8 true

4 16 true

5 32 true

6 64 true

7 128 false

𝑵 = 𝟔

ACTIVITY – WHILE LOOP

• What is wrong with the following code?

• What happens?

• Fix it and explain what the code outputs

1. int i = 0;

2. while (i <= N)

3. System.out.println(i);

4. i = i + 5;

ACTIVITY – WHILE LOOP

• Write an algorithm (in pseudocode) to compute the number of digits an

integer has.

• Example: input – 34567 output – 5

• Bonus: modify your algorithm to compute the number of “digits” for any base,

e.g., binary, octal, or hexadecimal

EXAMPLE: IMPLEMENTING MATH.SQRT()

• Newton-Raphson method to compute 𝑐:

• Initialize 𝑡0 = 𝑐

• Repeat-until 𝑡𝑖 = c/ti, up to desired

precision:

set 𝑡𝑖+1 to be the average of 𝑡𝑖 and 𝑐/𝑡𝑖
730954142135623.1)(

7468994142135623.1)(

7450974142156862.1)(

666654166666666.1)(

5.1)(

0.2

4

3

2

1

0

2
42

1
5

2
32

1
4

2
22

1
3

2
12

1
2

2
02

1
1

0













t

t

t

t

t

tt

tt

tt

tt

tt

t

computing the square root of 2

EXAMPLE: IMPLEMENTING MATH.SQRT()

• Newton-Raphson method to compute 𝑐:

• Initialize 𝑡0 = 𝑐

• Repeat-until 𝑡𝑖 = c/ti, up to desired precision:

set 𝑡𝑖+1 to be the average of 𝑡𝑖 and 𝑐/𝑡𝑖

1. public class Sqrt {

2. public static void main(String[] args) {

3. double epsilon = 1e-15;

4. double c = Double.parseDouble(args[0]);

5. double t = c;

6. while (Math.abs(t - c/t) > t*epsilon) {

7. t = (c/t + t) / 2.0;

8. }

9. System.out.println(t);

10. }

11. }

% java Sqrt 2.0

1.414213562373095

ACTIVITY – WHILE LOOP

• Reverse guessing game – Write a program which takes as input 𝑁 and a

number 𝑔. Generate random numbers in the range 1,𝑁 until 𝑔 is generated.

Output the number of guesses the computer took.

• Bonus

• Protect your program input with if statements.

• Allow the computer to repeat the guessing process for g 10 times. Average the number of

guesses taken.

QUESTION DAY

• This is your chance to ask about all things java. Consider it a review and

clarification time! I will explain anything you want to the best of my ability.

EXAMPLES – WITH A PARTNER

• What does are the values of 𝑛 and 𝑚 after this:

int n = 1234567;

int m = 0;

while(n != 0) {

m = (10*m) + (n % 10);

n /= 10;

}

• Show the trace of the program at each step

EXERCISE – WITH A PARTNER

• Random walk. You begin standing at the center of a disk of radius 𝑟. At each time-

step you pick a random direction in with respect to the 𝑥-axis and take a step of 1

meter. How many steps did it take you to fall off?

• Start at 𝑥, 𝑦 = 0, 0 ; *YES DECIMAL PLACES ARE ALLOWED*

• Randomly generate theta 𝜃 ∈ 0,2𝜋

• Then your new position 𝑥, 𝑦 = 𝑥 + cos 𝜃 , 𝑦 + sin 𝜃

• Bonus: Bias the random walk so that the random direction isn’t 100% random.

• Bonus: Lets say after falling off your disk you fall on another disk, for 𝑁 disks. Each time you

fall, you land at a random position 𝑟 ∗ 𝑐𝑜𝑠 𝜃 , 𝑟 ∗ 𝑠𝑖𝑛 𝜃 where 𝜃 ∈ 0, 2𝜋 and begin

again. How many steps did it take?

• Start by planning you algorithm. Then implement it.

• This question has applications to simulating cellular and molecular systems.

THE FOR LOOP

FOR LOOPS

• for loop. Another common repetition structure.

• Execute initialization statement.

• Evaluate a boolean expression.

• If true, execute some statements.

• And then the increment statement.

• Repeat.

for (init; boolean expression; increment) {

statement 1;

statement 2;

}

statement 1

true

false

boolean expression

statement 2

init

increment

body

loop continuation condition

ANATOMY OF A FOR LOOP

• Q. What does it print?
shorthand for i = i +1

LOOP EXAMPLES

PRACTICE

• Table 1: Write a for loop to output all numbers between integers 𝑎 and 𝑏

• Table 2: Write a for loop to output all command line arguments. Recall:

args.length gives the number of command line arguments

• Table 3: Write a for loop to output the multiples of an integer 𝑎 up to 𝑁

• Table 4: Write a for loop to output all the even numbers from 100 to 999 in

reverse order.

NESTING

NESTING

• In control flow, nesting is where you place a control structure inside of another

• Example: 2 for loops to print a multiplication table

1. for(int i = 0; i < 10; ++i) {

2. for(int j = 0; j < 10; ++j)

3. System.out.printf(“%d*%d = %2d\t”, i, j, i*j);

4. System.out.println();

5. }

NESTED IF STATEMENTS

• Use nested if statements to handle multiple

alternatives.

1. if (income < 47450) rate = 0.22;

2. else {

3. if (income < 114650) rate = 0.25;

4. else {

5. if (income < 174700) rate = 0.28;

6. else {

7. if (income < 311950) rate = 0.33;

8. else rate = 0.35;

9. }

10. }

11. }

• Or use the shorthand:

1. if (income < 47450) rate = 0.22;

2. else if (income < 114650) rate = 0.25;

3. else if (income < 174700) rate = 0.28;

4. else if (income < 311950) rate = 0.33;

5. else rate = 0.35;

MONTE CARLO SIMULATION

GAMBLER'S RUIN

• Gambler's ruin. Gambler starts with $stake and places $1 fair bets until going

broke or reaching $goal.

• What are the chances of winning?

• How many bets will it take?

• One approach. Monte Carlo simulation.

• Flip digital coins and see what happens.

• Repeat and compute statistics.

GAMBLER'S RUIN

1. public class Gambler {

2. public static void main(String[] args) {

3. int stake = Integer.parseInt(args[0]), goal = Integer.parseInt(args[1]); T = Integer.parseInt(args[2]);

4. int wins = 0;

5. // repeat experiment T times

6. for (int t = 0; t < T; t++) {

7. // do one gambler's ruin experiment

8. int cash = stake;

9. while (cash > 0 && cash < goal) {

10. // flip coin and update

11. if (Math.random() < 0.5) cash++;

12. else cash--;

13. }

14. if (cash == goal) wins++;

15. }

16. System.out.println(wins + " wins of " + T);

17. }

18. }

% java Gambler 5 25 1000

191 wins of 1000

% java Gambler 5 25 1000

203 wins of 1000

% java Gambler 500 2500 1000

197 wins of 1000

OTHER CONTROL FLOW STATEMENTS

DO-WHILE LOOP

• do-while loop. Guaranteed to execute at least once!

• Execute sequence of statements.

• Check loop-continuation condition.

• Repeat.

do {

statement 1;

statement 2;

} while (boolean expression);

statement 2

true

false

boolean expression

statement 1

EXAMPLE: DO-WHILE

• Average a set of numbers

1. Scanner s = new Scanner(System.in);

2. double sum = 0, number = 0;

3. do {

4. System.out.print(“Enter a number (0 to quit): ”);

5. number = s.nextDouble();

6. sum += number;

7. } while(number != 0);

8. System.out.println(“Sum: ” + sum);

COMPARISON OF LOOPS

• for loop – used when you know how many times to execute or each iteration

has a natural increment

• while loop – used to execute 0 or more times. Pre-condition check.

• do-while loop – used to execute 1 or more time. Post-condition check.

OTHER HELPFUL STATEMENTS FOR LOOPS

• break – immediately exit the loop. Do

not continue executing any more of the

loop:

while(true) {

if(q-key-is-pressed()) //quit the game

break;

Game-loop();

}

• continue – immediately skip to the end of the

body of the loop, i.e., start next iteration

(checking the condition):

for(int i = 0; i < 10; ++i) {

if(isPrime(i)) //OCD against prime numbers

continue;

HandleNotPrimes();

}

MULTIPLE CONDITIONS WITH SWITCH

• Switch statement. Allows multiple

alternatives just like with if-else.

• Expression must be of type char, byte, int,

String, etc. But no floating point values!

• default is like else

• break exits switch block

switch(expression) {

case firstValue: statements; break;

case secondValue: statements; break;

default: statements;

}

Example

1. char keyPressed;

2. switch(keyPressed) {

3. case ‘w’: MoveUp(); break;

4. case ‘a’: MoveLeft(); break;

5. case ‘s’: MoveDown(); break;

6. case ‘d’: MoveRight(); break;

7. default: StandStill();

8. }

CONTROL FLOW SUMMARY

• Control flow.

• Sequence of statements that are actually executed in a program.

• Conditionals and loops: enable us to choreograph the control flow.

Control Flow Description Examples

Straight-line programs All statements are executed

in the order given

Conditionals Certain statements are

executed depending on the

values of certain variables

if; if-else; switch

Loops Certain statements are

executed repeatedly until

certain conditions are met

while; for; do-while

