1
T

e
J f CMSC 150
INTRODUCTION TO COMPUTING

LAB — WEEK 11

®* ADVANCED TOPICS

1\\5 GENERIC PROGRAMMING g

O

® Generic programming — programming in terms of operations of types only.

Any type that satisfies the operational constraints may be used.

® In Java — Multiple methods to do this. Polymorphism (at runtime) and Generics
(at compile time)

* A note on Java...no primitive types can be used in generic programming. This is not true

of something like C++

OBJECT!

Q PIECE OF CAKE...JUST TREAT EVERYTHING AS AN f
\

O
1. public class GenericArray |

Object|[] objs;

/* Other stuff.

But it 1s limited because Object doesn’t offer much.
Still.we can store anything!

*/

O OO doY Ul W

JAVA GENERICS

®* Can be better using “Generics”:

1l. public class GenericArray<T> { //T is an non primitive type
2. T[] objs;

3 /* Make assumptions on the operations of T, e.qg.,

4 all T have function draw(). Now any type that

5. satisfies this requirement may be used, regardless of
6 inheritance tree.

7

8

*/

® Use like:
GenericArray<String> = new GenericArray<String> () ;

~—

Types are explicitly written by the programmer

\\)
1\) JAVA GENERICS

O

® Can also be used in functions:
1. public static <T, S$> int compare(T t, S s) {

2 . //make assumptions on the types.

3. //Any type that satisfies operation constraints may be used!
4, return t.compareTo (s);

5.}

® Used like:

1. MyObjectl a;
2 . MyObject2 b; //MyObjectl has function “compareTo (MyObject2)”
3. int ¢ = compareTo (a, b);

\

Types are implicitly determined by compiler

O

1\\; DATA STRUCTURES

®* Data types specifically designed to
have “flexible” storage and to do so

efficiently

® Here | define some common ones.
CMSC 221 delves into how these

would be implemented.

“Find out what he's up to.”

ARRAYLIST

* A “growable” array
® Generic class

® Found in Java.util.ArraylList
(use import)

®* Common functions: add, remove, size,
contains

® Can also use related classes Vector,
LinkedList

1. import java.util.ArrayList;
2../*in the code somewhere*/..
3. ArrayList<String> list =
new ArrayList<String>();
4,1ist.add(“Hello”) ;
5.1list.add (“There”) ;
©.list.remove (“Hello”) ;

s
(

MAPS

® Associative containers relate pairs of
data, referred to as key, value pairs

®* Example: student id to student record
® Provides very fast lookup!

®* Can use HashMap or TreeMap
(remember to import)

®* Common functions: put, get, remove,
size, containsKey, containsValue, etc.

1. import java.util.HashMap;

3. HashMap<Integer, String> h =
new HashMap<Integer, String>();

4.h.put (4, “JLDiablo”);

5.h.put (2, “HelloWorld!”):;

6.String x = h.get (2);

O

1\\; RANGE-BASED FOR LOOP

®* “For-each”

® Works on arrays and all data structures

1l.int[] nums = {2, 4, 6, 8, 10};
2.for(int item : nums) {

3. System.out lprintln (item);
4.}

l

Read as “for each int item in nums”

* K\; e
1\@ JAVA WILDCARDS (

O

® A very related note, wildcards... “?” represents an unknown type. You can put

extends or super constraints on ?, “? extends X" or “? super Y’ then:
P ' ’

.public static void printArraylList (ArrayList<?> 1) ({
for (Object e : 1)
System.out.print(e + “ 7);

W N =

1\\; EXCEPTIONS AND TRY-CATCH

/]
O) Y . . .
We have seen exceptions in our code. Sometimes ®* Throwing an exception (e.g., you detect an error):
they are unavoidable, e.g., user does something throw Exception (“"My error msg”);
wrong. Instead of crashing we would like to handle ® Catching exception:
the error, fix the mistake, and continue the program try {
if possible functionThatMightThrowException () ;

}
catch (SpecificExceptionType e) {
howeverYouHandleThis () ;

}
finally {

DoSomethingToCleanup () ;

1\\; LAMBDA FUNCTIONS

O

®* Nameless functions, written directly where they are used

®* Example:

1. ArraylList<Integer> numbers = new ArrayList<Integer>();
2. for(int i = 0; i < 1000; ++1)

3 numpbers.add ((int) (Math.random () *10000)) ;

4

Collections.sort (numbers, (Integer i1, Integer 12) -> il.compareTo(12));

T T

Parameters Body

MUCH, MUCH, MORE

* Threading /parallel computation
®* Networking
® Databases

® Other libraries (e.g., advanced

graphics)

® Etc., etc.

DIE NON-SENTIENT
TURDWAFFLE!

~ el

g ™
8 o

HMM, THIS HAS TO BE
RIGHT. MAYBE IF I COMPILE
IT AFEW POZEN MORE

@

ABI}EI’TANGE

1\@ EXERCISES

O

® This is your time to work on your final project. Ask lots of questions now and

make significant progress so you can enjoy your break!

