
CMSC 150 
INTRODUCTION TO COMPUTING
LAB – WEEK 11

• ADVANCED TOPICS

• Generics

• ArrayList, Map

• Range-based For loop

• Lambdas



GENERIC PROGRAMMING

• Generic programming – programming in terms of operations of types only. 

Any type that satisfies the operational constraints may be used.

• In Java – Multiple methods to do this. Polymorphism (at runtime) and Generics 

(at compile time)

• A note on Java…no primitive types can be used in generic programming. This is not true 

of something like C++



PIECE OF CAKE…JUST TREAT EVERYTHING AS AN 
OBJECT!

1.public class GenericArray {

2. Object[] objs;

3. …

4. /* Other stuff.

5. But it is limited because Object doesn’t offer much.

6. Still…we can store anything!

7. */

8. …

9.}



JAVA GENERICS

• Can be better using “Generics”:

1. public class GenericArray<T> { //T is an non primitive type

2. T[] objs;

3. /* Make assumptions on the operations of T, e.g., 

4. all T have function draw(). Now any type that 

5. satisfies this requirement may be used, regardless of 

6. inheritance tree.

7. */

8. }

• Use like:

GenericArray<String> = new GenericArray<String>();

Types are explicitly written by the programmer



JAVA GENERICS

• Can also be used in functions:

1. public static <T, S> int compare(T t, S s) {

2. //make assumptions on the types. 

3. //Any type that satisfies operation constraints may be used!

4. return t.compareTo(s);

5. }

• Used like:

1. MyObject1 a; 

2. MyObject2 b; //MyObject1 has function “compareTo(MyObject2)”

3. int c = compareTo(a, b);

Types are implicitly determined by compiler



DATA STRUCTURES

• Data types specifically designed to 

have “flexible” storage and to do so 

efficiently

• Here I define some common ones. 

CMSC 221 delves into how these 

would be implemented.



ARRAYLIST

• A “growable” array

• Generic class

• Found in java.util.ArrayList

(use import)

• Common functions: add, remove, size, 

contains

• Can also use related classes Vector, 

LinkedList

1.import java.util.ArrayList;

2.…/*in the code somewhere*/…
3.ArrayList<String> list = 

new ArrayList<String>();

4.list.add(“Hello”);
5.list.add(“There”);
6.list.remove(“Hello”);



MAPS

• Associative containers relate pairs of 

data, referred to as key, value pairs

• Example: student id to student record

• Provides very fast lookup!

• Can use HashMap or TreeMap

(remember to import)

• Common functions: put, get, remove, 

size, containsKey, containsValue, etc.

1.import java.util.HashMap;
2.…/*Somewhere in the code*/…
3.HashMap<Integer, String> h = 

new HashMap<Integer, String>();

4.h.put(4, “JLDiablo”);
5.h.put(2, “HelloWorld!”);
6.String x = h.get(2);



RANGE-BASED FOR LOOP

• “For-each”

• Works on arrays and all data structures

1.int[] nums = {2, 4, 6, 8, 10};

2.for(int item : nums) {

3. System.out.println(item);

4.}

Read as “for each int item in nums”



JAVA WILDCARDS

• A very related note, wildcards… “?” represents an unknown type. You can put 

extends or super constraints on ?, “? extends X” or “? super Y”, then:

1.public static void printArrayList(ArrayList<?> l) {

2. for(Object e : l)

3. System.out.print(e + “ ”);

4.}



EXCEPTIONS AND TRY-CATCH

• We have seen exceptions in our code. Sometimes 

they are unavoidable, e.g., user does something 

wrong. Instead of crashing we would like to handle 

the error, fix the mistake, and continue the program 

if possible

• Throwing an exception (e.g., you detect an error):

throw Exception(“My error msg”);

• Catching exception:

try {

functionThatMightThrowException();

}

catch(SpecificExceptionType e) {

howeverYouHandleThis();

}

finally {

DoSomethingToCleanup();

}



LAMBDA FUNCTIONS

• Nameless functions, written directly where they are used

• Example:
1. ArrayList<Integer> numbers = new ArrayList<Integer>();

2. for(int i = 0; i < 1000; ++i)

3. numbers.add((int)(Math.random()*10000));

4. Collections.sort(numbers, (Integer i1, Integer i2) -> i1.compareTo(i2));

Parameters Body



MUCH, MUCH, MORE

• Threading/parallel computation

• Networking

• Databases

• Other libraries (e.g., advanced 

graphics)

• Etc., etc.



EXERCISES

• This is your time to work on your final project. Ask lots of questions now and 

make significant progress so you can enjoy your break!


