
CMSC 150
INTRODUCTION TO COMPUTING
LAB – WEEK 5

• FILE IO

LETS GO OVER ANSWERS TO PREVIOUS
PROGRAMMING ASSIGNMENT

INPUT AND OUTPUT

• Input devices

• Output devices.

• Goal. Java programs that interact with the outside world.

• Java Libraries support these interactions

• We use the Operating System (OS) to connect our program to them

Display Speakers

Keyboard Digital cameraHard

drive

Printer

Mouse Network

Hard

drive

Network MP3

Player

Microphone

WHAT HAVE WE SEEN SO FAR?

• Command-line input.

• Example: read an integer 𝑁 as

command-line argument.

• Standard output.

• The OS output stream for text

• By default, standard output is sent to

Terminal.

• Example: System.out.println() goes to

standard output.

• Standard input.

• The OS input stream for text

• By default, standard input is received

from the Terminal.

• Example: Scanner

• “Standard Draw.”

• Really a wrapper for Java’s GUI libraries

• Output to a window instead of a terminal

• Example: Draw a circle on the screen

FILE INPUT AND OUTPUT

FILE INPUT

• We can reuse Scanner!

• Instead of “scanning” System.in, we scan a

File.

1. Scanner in = new Scanner(

new File(“myfile.txt”));

2. in.nextInt();

3. in.nextDouble();

4. in.hasNext();

• However we must:

• Import Scanner

• Import File and FileNotFoundException

• Modify our main function to “throw”

FileNotFoundExceptions

1. import java.io.File;

2. import java.io.FileNotFoundException;

3. import java.util.Scanner;

4. public class MyProgram {

5. public static void main(String[] args)

throws FileNotFoundException {

6. //Do something!

7. }

8. }

FILE OUTPUT

• We can use PrintWriter

• Offers print, println, printf just like

System.out

1. PrintWriter out =

new PrintWriter(“MyFile.txt”);

2. out.println(“Hello FileIO World!”);

• Similarly we need to:

• Import PrintWriter and

FileNotFoundException

1. import java.io.PrintWriter;

• Modify main to throw

FileNotFoundExceptions

FILE INPUT/OUTPUT CAVEATS

• Always call close after you are done

using Scanner or PrintWriter

1. Scanner in = new Scanner(

new File(“MyFile.txt”));

2. //Use the Scanner as much

//as you want

3. in.close();

• Call flush often on PrintWriter to

ensure all output gets into the file.

1. PrintWriter out =

new PrintWriter(“MyFile.txt”);

2. //Use the PrintWriter as much

//as you want

3. out.flush(); //Always flush after use!

4. out.close();

FOR MORE INFORMATION

• Google

• API

• Tutorials

• StackOverflow

• Practice, Practice, Practice!

EXERCISE – EVERYONE CODE ALONG

EXERCISE

• We work for JLDiablo’s National Bank of Tristram.

• We manage savings, checking, and loan accounts for the citizens of Tristram, like

good ole Wirt with his peg leg.

• We have all of the accounts stored in a file (accounts.txt). Each account has an id, a

type, and an amount.

• We are gonna write a program to compute monthly changes based on the following:

• Savings earn interest of 0.01%

• Loans accrue interest of 0.4%

• Checking accounts hava a monthly fee of 10 gold.

• After we are done, we are going to save to a new file

Banker of the Month!

EXERCISE – START THE PROGRAM

1. import java.util.Scanner;

2. import java.io.File;

3. import java.io.FileNotFoundException;

4. Import java.io.PrintWriter;

5. public class Banking {

6. public static void main(String[] args) throws FileNotFoundException {

7. String inFileName = args[0];

8. String outFileName = args[1];

9. //Read each of the accounts into arrays

10. //Process the account type

11. //Output each of the accounts into the new file

12. }

13. }

EXERCISE – START FILLING OUT THE COMMENTS
INTO CODE

1. //Read each account into an array

2. Scanner in = new Scanner(new File(inFileName));

3. int numAccounts = in.nextInt();

4. String[] accountTypes = new String[numAccounts];

5. double[] accountValues = new double[accountValues];

6. for(int i = 0; i < numAccounts; ++i) {

7. accountTypes[i] = in.next();

8. accountValues[i] = in.nextDouble();

9. }

10. in.close();

EXERCISE – COMPILE, TEST, AND CONTINUE

1. //Output each of the accounts into the new file

2. PrintWriter out = new PrintWriter(outFileName);

3. out.println(numAccounts);

4. for(int i = 0; i < numAccounts; ++i) {

5. out.printf(“%4d %8s %6.2f\n”, i, accountTypes[i], accountValues[i]);

6. }

7. out.flush();

8. out.close();

EXERCISE – COMPILE, TEST, AND CONTINUE

1. //Process the account type

2. for(int i = 0; i < numAccounts; ++i) {

3. if(accountTypes[i].equals(“Savings”))

4. accountValues[i] *= 1.0001; //0.01% interest

5. else if(accountTypes[i].equals(“Checking”))

6. accountValues[i] -= 10; //10 gold monthly fee

7. else if(accountTypes[i].equals(“Loan”))

8. accountValues[i] *= 1.0004; //0.4% interest

9. }

EXERCISE

1. Write a program that will generates a random polygon of 𝑁 = [3, 20] sides at random

𝑥, 𝑦 points between −10, 10 – i.e., an array. Compute the center of mass

comx =
Σ𝑥𝑖

𝑁
, 𝑐𝑜𝑚𝑦 =

Σ𝑦𝑖

𝑁
. Shift all points of the polygon by −𝑐𝑜𝑚𝑥, −𝑐𝑜𝑚𝑦 . Write

the polygon (array) to a file – first line is 𝑁, each line after is the points (output x y, not (x,

y))

2. Write a program that reads your polygon file and shows it to the user using StdDraw. Use a

random color to show the outline and a different random color to fill the polygon.

3. Augment your programs to generate and show 𝑀 = 25, 50 random polygons, i.e., use

multiarrays.

