
CMSC 150 
INTRODUCTION TO COMPUTING
LAB – WEEK 5

• FILE IO



LETS GO OVER ANSWERS TO PREVIOUS 
PROGRAMMING ASSIGNMENT



INPUT AND OUTPUT

• Input devices

• Output devices.

• Goal.  Java programs that interact with the outside world.

• Java Libraries support these interactions

• We use the Operating System (OS) to connect our program to them
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WHAT HAVE WE SEEN SO FAR?

• Command-line input.  

• Example: read an integer 𝑁 as 

command-line argument.

• Standard output.

• The OS output stream for text

• By default, standard output is sent to 

Terminal.

• Example: System.out.println() goes to 

standard output.

• Standard input.

• The OS input stream for text

• By default, standard input is received 

from the Terminal.

• Example: Scanner

• “Standard Draw.”

• Really a wrapper for Java’s GUI libraries

• Output to a window instead of a terminal

• Example: Draw a circle on the screen



FILE INPUT AND OUTPUT



FILE INPUT

• We can reuse Scanner!

• Instead of “scanning” System.in, we scan a 

File.

1. Scanner in = new Scanner(

new File(“myfile.txt”));

2. in.nextInt();

3. in.nextDouble();

4. in.hasNext();

• However we must:

• Import Scanner

• Import File and FileNotFoundException

• Modify our main function to “throw” 

FileNotFoundExceptions

1. import java.io.File;

2. import java.io.FileNotFoundException;

3. import java.util.Scanner;

4. public class MyProgram {

5. public static void main(String[] args)

throws FileNotFoundException {

6. //Do something!

7. }

8. }



FILE OUTPUT

• We can use PrintWriter

• Offers print, println, printf just like 

System.out

1. PrintWriter out = 

new PrintWriter(“MyFile.txt”);

2. out.println(“Hello FileIO World!”);

• Similarly we need to:

• Import PrintWriter and 

FileNotFoundException

1. import java.io.PrintWriter;

• Modify main to throw 

FileNotFoundExceptions



FILE INPUT/OUTPUT CAVEATS

• Always call close after you are done 

using Scanner or PrintWriter

1. Scanner in = new Scanner(

new File(“MyFile.txt”));

2. //Use the Scanner as much 

//as you want

3. in.close();

• Call flush often on PrintWriter to 

ensure all output gets into the file.

1. PrintWriter out = 

new PrintWriter(“MyFile.txt”);

2. //Use the PrintWriter as much 

//as you want

3. out.flush(); //Always flush after use!

4. out.close();



FOR MORE INFORMATION

• Google

• API

• Tutorials

• StackOverflow

• Practice, Practice, Practice!



EXERCISE – EVERYONE CODE ALONG



EXERCISE

• We work for JLDiablo’s National Bank of Tristram.

• We manage savings, checking, and loan accounts for the citizens of Tristram, like 

good ole Wirt with his peg leg.

• We have all of the accounts stored in a file (accounts.txt). Each account has an id, a 

type, and an amount.

• We are gonna write a program to compute monthly changes based on the following:

• Savings earn interest of 0.01%

• Loans accrue interest of 0.4%

• Checking accounts hava a monthly fee of 10 gold.

• After we are done, we are going to save to a new file

Banker of the Month!



EXERCISE – START THE PROGRAM

1. import java.util.Scanner;

2. import java.io.File;

3. import java.io.FileNotFoundException;

4. Import java.io.PrintWriter;

5. public class Banking {

6. public static void main(String[] args) throws FileNotFoundException {

7. String inFileName = args[0];

8. String outFileName = args[1];

9. //Read each of the accounts into arrays

10. //Process the account type

11. //Output each of the accounts into the new file

12. }

13. }



EXERCISE – START FILLING OUT THE COMMENTS 
INTO CODE

1. //Read each account into an array

2. Scanner in = new Scanner(new File(inFileName));

3. int numAccounts = in.nextInt();

4. String[] accountTypes = new String[numAccounts];

5. double[] accountValues = new double[accountValues];

6. for(int i = 0; i < numAccounts; ++i) {

7. accountTypes[i] = in.next();

8. accountValues[i] = in.nextDouble();

9. }

10. in.close();



EXERCISE – COMPILE, TEST, AND CONTINUE

1. //Output each of the accounts into the new file

2. PrintWriter out = new PrintWriter(outFileName);

3. out.println(numAccounts);

4. for(int i = 0; i < numAccounts; ++i) {

5. out.printf(“%4d %8s %6.2f\n”, i, accountTypes[i], accountValues[i]);

6. }

7. out.flush();

8. out.close();



EXERCISE – COMPILE, TEST, AND CONTINUE

1. //Process the account type

2. for(int i = 0; i < numAccounts; ++i) {

3. if(accountTypes[i].equals(“Savings”))

4. accountValues[i] *= 1.0001; //0.01% interest

5. else if(accountTypes[i].equals(“Checking”))

6. accountValues[i] -= 10;       //10 gold monthly fee

7. else if(accountTypes[i].equals(“Loan”))

8. accountValues[i] *= 1.0004; //0.4% interest

9. }



EXERCISE

1. Write a program that will generates a random polygon of 𝑁 = [3, 20] sides at random 

𝑥, 𝑦 points between −10, 10 – i.e., an array. Compute the center of mass

comx =
Σ𝑥𝑖

𝑁
, 𝑐𝑜𝑚𝑦 =

Σ𝑦𝑖

𝑁
. Shift all points of the polygon by −𝑐𝑜𝑚𝑥, −𝑐𝑜𝑚𝑦 . Write 

the polygon (array) to a file – first line is 𝑁, each line after is the points (output x y, not (x, 

y))

2. Write a program that reads your polygon file and shows it to the user using StdDraw. Use a 

random color to show the outline and a different random color to fill the polygon.

3. Augment your programs to generate and show 𝑀 = 25, 50 random polygons, i.e., use 

multiarrays.


