1. The expected space used by a skip list with \(n \) elements is \(\Theta(n) \), and the expected time to search for an element in a skip list is \(\Theta(\log n) \), which is asymptotically \(<\) (one of \(<\, =\, >\) than the worst-case time for searching in a binary search tree.

2. Consider a binary search tree \(T \) storing \(n \) (key, value) pairs, and let \(h \) denote the height of \(T \). In the best case, \(h \) is \(\Theta(\log n) \) and in the worst case, \(h \) is \(\Theta(n) \) (use asymptotic notation).

3. Consider a binary search tree \(T \) storing \(n \) (key, value) pairs, and let \(h \) denote the height of \(T \). The time for a \texttt{find}(\(k \)) operation is \(\Theta(h) \) and the time for a \texttt{put}(\(k, v \)) operation is \(\Theta(h) \).

4. Draw a binary search tree that would result from inserting the following items in this order (assuming the key and value are the same): 10, 20, 30, 40.

```
    20
   /   \
10    30
   \   /   \
    \30
```

5. Consider an AVL tree \(T \) storing \(n \) (key, value) pairs, and let \(h \) denote the height of \(T \). In the best case, \(h \) is \(\Theta(\log n) \) and in the worst \(h \) is \(\Theta(n) \) (use asymptotic notation).

6. Consider an AVL tree \(T \) storing \(n \) (key, value) pairs. The time for a \texttt{find}(\(k \)) operation is \(\Theta(\log n) \) and the time for a \texttt{put}(\(k, v \)) operation is \(\Theta(\log n) \).

7. Draw an AVL tree that would result from inserting the following items in this order (assuming the key and value are the same): 10, 20, 30, 40.

```
    20
   /   \
10    30
   \   /   \
    \30
   /   /   \
```

```