CMSC 335
COMPUTER GRAPHICS

LECTURE 11

• PHYSICALLY-BASED ANIMATION
ANIMATION

• **Animation** is the act of imparting life, motion, etc. into a scene

• Many approaches exist for animation (e.g., keyframe or motion capture)

• Many techniques are used to adjust animations (e.g., timing or deformations)
APPLICATION LOOP WITH DELTA-TIME AND FRAME LIMITING

1. target_frame_time = 0.17f
2. while isRunning() do
3. realdt = time - last_time
4. appdt = realdt * app_time_factor
5. // Process inputs
6. // Update world with appdt
7. // Generate outputs
8. // Frame limiting
9. while realdt < targetft do
10. doSomethingSmall()
PHYSICALLY-BASED ANIMATION

- **Physically-based animation** solves the differential equations of motion for an object.

- Physics in games involves these two basic elements:
 - Object-object interaction (Geometry)
 - Collision detection
 - Collision response
 - Mechanics (Calculus)
 - Object movement
REVIEW OF LINEAR (NEWTONIAN) MECHANICS

• Newton's second law of motion – force is mass by acceleration
 \[\vec{F} = m\vec{a} \]

• For position \(\vec{x} \):
 • Velocity \(\vec{v} = \dot{\vec{x}} \) (first derivative with respect to time)
 • Acceleration \(\vec{a} = \dot{\vec{v}} = \ddot{\vec{x}} \) (second derivative with respect to time)

• In games however, we are trying to compute the next time steps position \(\vec{x}' \), thus, we need the anti-derivative, i.e., integration
EULER INTEGRATION

• Euler integration – use current velocity to alter position
 \[\hat{x}' = \hat{x} + \hat{v} \Delta t \]
 \[\hat{v}' = \hat{v} + \hat{a} \Delta t \]

• Semi-implicit Euler integration – use next velocity to alter position
 \[\hat{v}' = \hat{v} + \hat{a} \Delta t \]
 \[\hat{x}' = \hat{x} + \hat{v}' \Delta t \]
PHYSICALLY-BASED ANIMATION
Essentially, physically-based animation simulates the evolution of state.

- **State** is defined as all of the properties that change over time, encoded as a vector \vec{x}:
 - e.g., position, velocity, color, etc.
- Differential equations describe the change in state.
Example

- Point mass with gravity
 - State $\dot{x} = \begin{bmatrix} \dot{p} \\ \dot{v} \end{bmatrix}$ and mass m
 - Force of gravity: $\ddot{F} = m \ddot{g} = m \ddot{a}$

- Explicitly solving for position:
 - $\ddot{v} = \int \ddot{g} \, dt = \dddot{v}_0 + \dddot{g} t$
 - $\ddot{p} = \int (\dddot{v}_0 + \dddot{g} t) \, dt = \dddot{p}_0 + \dddot{v}_0 t + \frac{1}{2} \dddot{g} t^2$

- Typically, equations are not this nice and we apply Euler Integration over a small enough time step
 - $\dddot{x}' = \dddot{x} + \dddot{x} \Delta t = \begin{bmatrix} \dddot{p} \\ \dddot{v} \\ \dddot{g} \end{bmatrix}$
SIMULATION

• Since we will not typically have a representation of the equations, at each time step:
 • Calculate the forces acting upon a body
 • Compute the acceleration
 \[\ddot{a} = \frac{\vec{F}}{m} \]
 • Numerically integrate
• Collisions complicate this process a bit
SIMULATION WITH COLLISIONS

- Physics loop
 \[t \leftarrow \Delta t \]
 \[\text{while } t > 0 \text{ do} \]
 \[\text{setAccelerationFromForces()} \]
 \[\ddot{x}_{n+1} \leftarrow \dot{x}_n + \ddot{x}_n t \]
 \[\text{if collision}(\dddot{x}_n, \dddot{x}_{n+1}) \text{ then} \]
 \[c \leftarrow \text{firstCollisionTime()} \]
 \[\ddot{x}_{n+1} \leftarrow \dot{x}_n + \ddot{x}_n c \]
 \[\text{collisionResponse()} \]
 \[t \leftarrow t - c \]
 \[\text{else} \]
 \[t \leftarrow 0 \]
 \[\ddot{x}_n \leftarrow \ddot{x}_{n+1} \]
RESTING

- It may be surprising to know that getting an object to stop and rest is surprisingly difficult, because of numerical error and being in a state of many collisions
 - Velocity threshold or distance threshold
 - Analyze acceleration in direction of normal compared with a threshold ($|\vec{a} \cdot \hat{n}| < h$)
- Important that at rest an object is no longer simulated to reduce computation cost
Air resistance $F_a = -d\ddot{v}$
- Opposite direction as velocity
- $d \in [0,1]$ is a viscosity constant
- Can also be related to velocity squared

Wind $F_w = d\ddot{w}$

Friction response to collisions
PARTICLE SYSTEMS

• Set of independent point-masses
 • State should include position and velocity of each particle
 • Can include temperature, age, color, etc

• Pre-allocate memory for the system, e.g., an array of size 10000.

• Used to simulate affects, e.g., water, fire, smoke, etc.
GENERATORS

• Initial conditions for the particles need to vary and we want to regenerate particles after they "die"

• Generators create values/vectors based on a distribution
GENERATORS

• Distributions
 • Uniform – all values within a range \([a, b]\) are equally likely
 • Gaussian (normal) – defined by a mean \(\mu\) and variance \(\sigma^2\)
EXAMPLE GENERATORS

- **Point generator**
 - $\vec{p}_0 = \vec{p}$ | \vec{p} is an input value
 - $\vec{v}_0 = \vec{v}\vec{r}$ | \vec{v} is input and \vec{r} is a random vector

- **Directed generator**
 - $\vec{p}_0 = \vec{p}$ | \vec{p} is an input value
 - $\vec{v}_0 = \vec{v}(\vec{r} + \hat{n})$ | \vec{v}, \hat{n} are input and \vec{r} is a small random vector

- **Disc generator**
 - $\vec{p}_0 = \vec{r}$ | \vec{r} is a random point within a circle
 - $\vec{v}_0 = \hat{n}$ | \hat{n} is input

- **Get creative!**
ATTRACTION AND REPULSION

• Gravity toward a point
 • \(\mathbf{F}_g = -\frac{g m_1 m_2}{r^2} \hat{u} \), where \(\hat{u} \) is direction away from the point (or \(\hat{u} \) is toward and \(g \) is negative)
 • Alterations:
 • Ignore second mass
 • Be proportional to \(\frac{1}{r} \)

• Repulsor from a point
 • \(\mathbf{F}_g = \frac{g m_1 m_2}{r^2} \hat{u} \)
 • Anything goes, e.g., towards/away from lines, potential fields, etc
FLOCKING SYSTEMS

- Point-masses that interact
- Need to determine set of neighbors to interact with and forces from those interactions
- Example would be simulating crowds of people
SPRING-MASS SYSTEMS

• Point-masses connected by springs
• Need to use Fourth Order Runge-Kutta for numerical stability
• Examples would be cloth or hair simulations
RIGID BODY MECHANICS

- Volumes with rotational physics, i.e., torques and angular velocities
- Need good collision detection and response mechanism
- Very useful, e.g., fighting mechanics or cars in racing games
IMPLEMENTATION CONCERNS
INSTANCED RENDERING

• Instanced rendering, uses the same model (vertex buffer) to render at various transforms (stored in a different buffer)

• Much more efficient than separate model rendering
COMPUTE SHADERS

• The programmable rasterization pipeline allows for general computations to occur

• A compute shader allows easy parallelization of the integration, etc.
RECOMMENDED TEXTS