CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DEPTH-FIRST SEARCH
DEPTH-FIRST SEARCH

- **Depth-first search (DFS)** is a general technique for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes $O(n + m)$ time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs as what Euler tour is to binary trees
DFS ALGORITHM FROM A VERTEX

Algorithm DFS(G, u)

Input: A graph G and a vertex u of G

Output: A collection of vertices reachable from u, with their discovery edges

1. Mark u as visited
2. for each edge \(e = (u, v) \in G.\text{outgoingEdges}(u) \) do
3. if v has not been visited then
4. Record e as a discovery edge for v
5. DFS(G, v)
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

\[I(A) = \{B, C, D, E\} \]

\[I(B) = \{A, C, F\} \]
\[I(B) = \{A, C, F\} \]

\[I(C) = \{A, B, D, E\} \]

\[I(C) = \{A, B, D, E\} \]
\[I(C) = \{A, B, D, E\} \]
\[I(C) = \{A, B, D, E\} \]

\[I(D) = \{A, C\} \]

\[I(E) = \{A, C\} \]
Example

$I(C) = \{A, B, D, E\}$

$I(B) = \{A, C, F\}$

$I(G) = \emptyset$

$I(F) = \{B\}$

$I(B) = \{A, C, F\}$

$I(A) = \{A, B, C, D\}
EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited
 • Label edges as discovery or back edges
DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic strategy for exploring a maze
 • We mark each intersection, corner and dead end (vertex) visited
 • We mark each corridor (edge) traversed
 • We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
DFS ALGORITHM

- The algorithm uses a mechanism for setting and getting “labels” of vertices and edges

Algorithm DFS(G)

Input: Graph G

Output: Labeling of the edges of G as discovery edges and back edges

1. for each \(v \in G \) \.vertices() do
2. setLabel(\(v \), UNEXPLORED)
3. for each \(e \in G \).edges() do
4. setLabel(\(e \), UNEXPLORED)
5. for each \(v \in G \).vertices() do
6. if getLabel(\(v \)) = UNEXPLORED then
7. DFS(G, v)

Algorithm DFS(G, v)

Input: Graph G and a start vertex v

Output: Labeling of the edges of G in the connected component of v as discovery edges and back edges

1. setLabel(\(v \), VISITED)
2. for each \(e \in G \).outgoingEdges(\(v \)) do
3. if getLabel(\(e \)) = UNEXPLORED
4. \(w \leftarrow G \).opposite(\(v \), \(e \))
5. if getLabel(\(w \)) = UNEXPLORED then
6. setLabel(\(e \), DISCOVERY)
7. DFS(G, w)
8. else
9. setLabel(\(e \), BACK)
PROPERTIES OF DFS

• Property 1
 • DFS\((G, v)\) visits all the vertices and edges in the connected component of \(v\)

• Property 2
 • The discovery edges labeled by DFS\((G, v)\) form a spanning tree of the connected component of \(v\)
ANALYSIS OF DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Function $\text{DFS}(G, v)$ and the method outgoingEdges() are called once for each vertex
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \text{deg}(v) = 2m$
APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern

• We call $\text{DFS}(G, u)$ with u as the start vertex

• We use a stack S to keep track of the path between the start vertex and the current vertex

• As soon as destination vertex z is encountered, we return the path as the contents of the stack

Algorithm $\text{pathDFS}(G, v, z)$

1. $\text{setLabel}(v, \text{VISITED})$
2. $S.\text{push}(v)$
3. if $v = z$
4. return $S.\text{elements}()$
5. for each $e \in G.\text{outgoingEdges}(v)$ do
6. if $\text{getLabel}(e) = \text{UNEXPLORED}$ then
7. $w \leftarrow G.\text{opposite}(v, e)$
8. if $\text{getLabel}(w) = \text{UNEXPLORED}$ then
9. $\text{setLabel}(e, \text{DISCOVERY})$
10. $S.\text{push}(e)$
11. $\text{pathDFS}(G, w)$
12. $S.\text{pop}()$
13. else
14. $\text{setLabel}(e, \text{BACK})$
15. $S.\text{pop}()$
APPLICATION
CYCLE FINDING

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

```
Algorithm cycleDFS(G, v)
1. setLabel(v, VISITED)
2. S.push(v)
3. for each e ∈ G.outgoingEdges(v) do
4.   if getLabel(e) = UNEXPLORED then
5.     w ← G.opposite(v, e)
6.     S.push(e)
7.     if getLabel(w) = UNEXPLORED then
8.       setLabel(e, DISCOVERY)
9.       cycleDFS(G, w)
10.      S.pop()
11.     else
12.       T ← empty stack
13.       repeat
14.         T.push(S.pop())
15.       until T.top() = w
16.       return T.elements()
17.     S.pop()
```
We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.

In the directed DFS algorithm, we have four types of edges:
- discovery edges
- back edges
- forward edges
- cross edges

A directed DFS starting at a vertex \(s \) determines the vertices reachable from \(s \).
REACHABILITY

• DFS tree rooted at v: vertices reachable from v via directed paths
STRONG CONNECTIVITY

- Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there’s a w not visited, print “no”
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there’s a w not visited, print “no”
 - Else, print “yes”
- Running time: $O(n + m)$
STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
• Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).

\[
\begin{align*}
\{a, c, g\} \\
\{f, d, e, b\}
\end{align*}
\]
BREADTH-FIRST SEARCH
BREADTH-FIRST SEARCH

- **Breadth-first search (BFS)** is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $O(n + m)$ time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
BFS ALGORITHM

• The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)
Input: Graph G
Output: Labeling of the edges and partition of the vertices of G
1. for each v ∈ G.vertices() do
2. setLabel(v, UNEXPLORED)
3. for each e ∈ G.edges() do
4. setLabel(e, UNEXPLORED)
5. for each v ∈ G.vertices() do
6. if getLabel(v) = UNEXPLORED then
7. BFS(G,v)

Algorithm BFS(G,s)
1. L₀ ← {s}
2. setLabel(s, VISITED)
3. i ← 0
4. while ¬Lᵢ.isEmpty() do
5. Lᵢ₊₁ ← Ø
6. for each v ∈ Lᵢ do
7. for each e ∈ G.outgoingEdges(v) do
8. if getLabel(e) = UNEXPLORED then
9. w ← G.opposite(v,e)
10. if getLabel(w) = UNEXPLORED then
11. setLabel(e, DISCOVERY)
12. setLabel(w, VISITED)
13. Lᵢ₊₁ ← Lᵢ₊₁ ∪ {w}
14. else
15. setLabel(e, CROSS)
16. i ← i + 1
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
cross edge
EXAMPLE

discovery edge
cross edge
visited vertex
unexplored vertex
unexplored edge
discovery edge
cross edge
EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited and note the level they are in
 • Label edges as discovery or cross edges
PROPERTIES

• Notation
 • G_s: connected component of s

• Property 1
 • $\text{BFS}(G, s)$ visits all the vertices and edges of G_s

• Property 2
 • The discovery edges labeled by $\text{BFS}(G, s)$ form a spanning tree T_s of G_s

• Property 3
 • For each vertex $v \in L_i$
 • The path of T_s from s to v has i edges
 • Every path from s to v in G_s has at least i edges
ANALYSIS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence L_i

• Method outgoingEdges() is called once for each vertex

• BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 • Compute the connected components of G
 • Compute a spanning forest of G
 • Find a simple cycle in G, or report that G is a forest
 • Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- DFS
 - Spanning forest, connected components, paths, cycles
 - Shortest paths
 - Biconnected components

- BFS
 - Spanning forest, connected components, paths, cycles
 - Shortest paths
 - Biconnected components
DFS VS. BFS

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges
TOPOLOGICAL ORDERING
DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph that has no directed cycles

• A topological ordering of a digraph is a numbering
 • $v_1, ..., v_n$
 • Of the vertices such that for every edge (v_i, v_j), we have $i < j$

• Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

• Theorem - A digraph admits a topological ordering if and only if it is a DAG
• Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)

A typical student day

wake up → study computer sci. → eat → nap → more c.s. → play → write c.s. program → bake cookies → sleep → dream about graphs → work out
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)
ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort(G)
1. \(H \leftarrow G \)
2. \(n \leftarrow G.\text{numVertices}() \)
3. while \(\neg H.\text{isEmpty}() \) do
4. Let \(v \) be a vertex with no outgoing edges
5. Label \(v \leftarrow n \)
6. \(n \leftarrow n - 1 \)
7. \(H.\text{removeVertex}(v) \)
IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search
• $O(n + m)$ time.

Algorithm topologicalDFS(G)

Input: DAG G
Output: Topological ordering of G

1. $n \leftarrow G$.numVertices()
2. Initialize all vertices as $UNEXPLOR ED$
3. for each vertex $v \in G$.vertices() do
 4. if getLabel(v) = $UNEXPLOR ED$ then
 5. topologicalDFS(G,v)

Algorithm topologicalDFS(G,v)

Input: DAG G, start vertex v
Output: Labeling of the vertices of G in the connected component of v

1. setLabel($v, VISITED$)
2. for each $e \in G$.outgoingEdges(v) do
 3. $w \leftarrow G$.opposite(v,e)
 4. if getLabel(w) = $UNEXPLOR ED$ then
 5. // e is a discovery edge
 6. topologicalDFS(G,w)
 7. else
 8. // e is a forward, cross, or back edge
 9. Label v with topological number n
10. $n \leftarrow n - 1$
TOPOLOGICAL SORTING EXAMPLE

Diagram showing a directed graph with nodes numbered 1 to 9, illustrating a topological sort example.