CHAPTER 12
SORTING AND SELECTION

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DIVIDE AND CONQUER ALGORITHMS
Divide-and-conquer is a general algorithm design paradigm:
- **Divide**: divide the input data S into k (disjoint) subsets S_1, S_2, \ldots, S_k
- **Recur**: solve the subproblems recursively
- **Conquer**: combine the solutions for S_1, S_2, \ldots, S_k into a solution for S

- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations (relations)
DIVIDE AND CONQUER ALGORITHMS
ANALYSIS WITH RECURRENCE EQUATIONS

• When the size of all subproblems is the same
 (frequently the case) the recurrence equation
 representing the algorithm is:

\[
T(n) = D(n) + kT\left(\frac{n}{c}\right) + C(n)
\]

• Where
 • \(D(n) \) is the cost of dividing \(S \) into the \(k \) subproblems
 \(S_1, S_2, ..., S_k \)
 • There are \(k \) subproblems, each of size \(\frac{n}{c} \) that will be
 solved recursively
 • \(C(n) \) is the cost of combining the subproblem solutions to
 get the solution for \(S \)
EXERCISE
RECURRENT EQUATION SETUP

• Algorithm – transform multiplication of two \(n \)-bit integers \(I \) and \(J \) into multiplication of \(\left(\frac{n}{2} \right) \)-bit integers and some additions/shifts

1. Where does recursion happen in this algorithm?

2. Rewrite the step(s) of the algorithm to show this clearly.

Algorithm \(\text{multiply}(I,J) \)

Input: \(n \)-bit integers \(I,J \)

Output: \(I * J \)

1. \text{if } n > 1 \text{ then}
2. \text{Split } I \text{ and } J \text{ into high and low order halves:}
 \[I_h, I_l, J_h, J_l \]
3. \(x_1 \leftarrow I_h * J_h; \) \(x_2 \leftarrow I_h * J_l; \)
4. \(x_3 \leftarrow I_l * J_h; \) \(x_4 \leftarrow I_l * J_l \)
5. \(Z \leftarrow x_1 * 2^n + x_2 * 2^{n/2} + x_3 * 2^{n/2} + x_4 \)
6. \text{else}
7. \(Z \leftarrow I * J \)
8. \text{return } Z
Algorithm – transform multiplication of two \(n\)-bit integers \(I\) and \(J\) into multiplication of \(\left(\frac{n}{2}\right)\)-bit integers and some additions/shifts

3. Assuming that additions and shifts of \(n\)-bit numbers can be done in \(O(n)\) time, describe a recurrence equation showing the running time of this multiplication algorithm

```
Algorithm multiply(I, J)
Input: \(n\)-bit integers \(I, J\)
Output: \(I \times J\)
1. if \(n > 1\) then
2. Split \(I\) and \(J\) into high and low order halves:
   \(I_h, I_l, J_h, J_l\)
3. \(x_1 \leftarrow multiply(I_h, J_h); \ x_2 \leftarrow multiply(I_h, J_l)\)
4. \(x_3 \leftarrow multiply(I_l, J_h); \ x_4 \leftarrow multiply(I_l, J_l)\)
5. \(Z \leftarrow x_1 \times 2^n + x_2 \times 2^n + x_3 \times 2^n + x_4\)
6. else
7. \(Z \leftarrow I \times J\)
8. return \(Z\)
```
EXERCISE
RECURRENCE EQUATION SETUP

Algorithm – transform multiplication of two n-bit integers I and J into multiplication of $\left(\frac{n}{2}\right)$-bit integers and some additions/shifts

• The recurrence equation for this algorithm is:

 \[
 T(n) = 4T\left(\frac{n}{2}\right) + O(n)
 \]

• The solution is $O(n^2)$ which is the same as naïve algorithm

Algorithm multiply(I, J)

Input: n-bit integers I, J

Output: $I \times J$

1. if $n > 1$ then
 2. Split I and J into high and low order halves:
 \[
 I_h, I_l, J_h, J_l
 \]
 3. $x_1 \leftarrow$ multiply(I_h, J_h); $x_2 \leftarrow$ multiply(I_h, J_l)
 4. $x_3 \leftarrow$ multiply(I_l, J_h); $x_4 \leftarrow$ multiply(I_l, J_l)
 5. $Z \leftarrow x_1 \times 2^n + x_2 \times 2^{n/2} + x_3 \times 2^{n/2} + x_4$

6. else
 7. $Z \leftarrow I \times J$
 8. return Z
DIVIDE AND CONQUER ALGORITHMS
ANALYSIS WITH RECURRENCE EQUATIONS

• Remaining question: how do we solve recurrence relations?
 • Iterative substitution — continually expand a recurrence to yield a summation, then bound the summation
 • Analyze the recursion tree — determine work per level and number of levels in a recursion tree. This is not a proof technique, more of an intuitive sketch of a proof
 • Master theorem (method) — rule to go directly to solution of recurrence. This is slightly beyond scope of course, but we will see it anyway
In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern. Example:

- $T(n) = 2T \left(\frac{n}{2} \right) + bn$
- $= 2 \left(2T \left(\frac{n}{2^2} \right) + b \left(\frac{n}{2} \right) \right) + bn = 2^2T \left(\frac{n}{2^2} \right) + 2bn$
- $= 2^3T \left(\frac{n}{2^3} \right) + 3bn$
- $= \ldots$
- $= 2^iT \left(\frac{n}{2^i} \right) + ibn$

Note that base, $T(n) = b$, case occurs when $2^i = n$. That is, $i = \log n$.

So,

$T(n) = bn + n \log n = O(n \log n)$
THE RECURSION TREE

• Draw the recursion tree for the recurrence relation and look for a pattern.

Example: \(T(n) = 2T\left(\frac{n}{2}\right) + bn \)

<table>
<thead>
<tr>
<th>depth</th>
<th>T’s</th>
<th>size</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(bn)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(n/2)</td>
<td>(bn)</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(n/2^i)</td>
<td>(bn)</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

• Total time: \(bn + bn \log n = \Theta(n \log n)\)
THE MASTER THEOREM (METHOD)

• Many divide-and-conquer algorithms have the form:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

• The master theorem:
 1. If \(f(n) \) is \(O\left(n^{\log_b a - \epsilon}\right) \), then \(T(n) \) is \(\Theta\left(n^{\log_b a}\right) \)
 2. If \(f(n) \) is \(\Theta\left(n^{\log_b a \log^k n}\right) \), then \(T(n) \) is \(\Theta\left(n^{\log_b a \log^{k+1} n}\right) \)
 3. If \(f(n) \) is \(\Omega\left(n^{\log_b a + \epsilon}\right) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af\left(\frac{n}{b}\right) \leq \delta f(n) \) for some \(\delta < 1 \)

• Examples
 • \(T(n) = 4T\left(\frac{n}{2}\right) + n \)
 - \(O(n^2) \)
 • \(T(n) = T\left(\frac{n}{2}\right) + 1 \)
 - \(O(\log n) \), (binary search)
 • \(T(n) = T\left(\frac{n}{3}\right) + n \log n \)
 - \(O(n \log n) \)
MERGE SORT

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

9 | 4 → 4 9

7 → 7 2 → 2

9 → 9 4 → 4
MERGE-SORT

- **Merge-sort** is based on the divide-and-conquer paradigm. It consists of three steps:
 - **Divide**: partition input sequence S into two sequences S_1 and S_2 of about $\frac{n}{2}$ elements each
 - **Recur**: recursively sort S_1 and S_2
 - **Conquer**: merge S_1 and S_2 into a sorted sequence

- What is the recurrence relation?

Algorithm $\text{mergeSort}(S,C)$

Input: Sequence S of n elements, Comparator C

Output: Sequence S sorted according to C

1. if S.size() > 1 then
2. $(S_1,S_2) \leftarrow \text{partition}(S,\frac{n}{2})$
3. $S_1 \leftarrow \text{mergeSort}(S_1,C)$
4. $S_2 \leftarrow \text{mergeSort}(S_2,C)$
5. $S \leftarrow \text{merge}(S_1,S_2)$
6. return S
The running time of Merge Sort can be expressed by the recurrence equation:

\[T(n) = 2T\left(\frac{n}{2}\right) + M(n) \]

We need to determine \(M(n) \), the time to merge two sorted sequences each of size \(\frac{n}{2} \).

Algorithm mergeSort

Input: Sequence \(S \) of \(n \) elements, Comparator \(C \)

Output: Sequence \(S \) sorted according to \(C \)

1. if \(S \).size() > 1 then
2. \((S_1, S_2) \leftarrow \text{partition}(S, \frac{n}{2}) \)
3. \(S_1 \leftarrow \text{mergeSort}(S_1, C) \)
4. \(S_2 \leftarrow \text{mergeSort}(S_2, C) \)
5. \(S \leftarrow \text{merge}(S_1, S_2) \)
6. return \(S \)
MERGING TWO SORTED SEQUENCES

• The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
• Merging two sorted sequences, each with $\frac{n}{2}$ elements and implemented by means of a doubly linked list, takes $O(n)$ time
 • $M(n) = O(n)$

Algorithm merge(A, B)

Input: Sequences A, B with $\frac{n}{2}$ elements each
Output: Sorted sequence of $A \cup B$

1. $S \leftarrow \emptyset$
2. while $\neg A$.isEmpty() $\land \neg B$.isEmpty() do
3. if A.first() < B.first() then
4. S.addLast(A.removeFirst())
5. else
6. S.addLast(B.removeFirst())
7. while $\neg A$.isEmpty() do
8. S.addLast(A.removeFirst())
9. while $\neg B$.isEmpty() do
10. S.addLast(B.removeFirst())
11. return S
MERGESORT

• So, the running time of Merge Sort can be expressed by the recurrence equation:

\[
T(n) = 2T\left(\frac{n}{2}\right) + M(n)
\]

\[
= 2T\left(\frac{n}{2}\right) + O(n)
\]

\[
= O(n \log n)
\]

Algorithm mergeSort(S, C)

Input: Sequence S of n elements, Comparator C

Output: Sequence S sorted according to C

1. if S.size() > 1 then
2. \((S_1, S_2) \leftarrow \text{partition}(S, \frac{n}{2})\)
3. \(S_1 \leftarrow \text{mergeSort}(S_1, C)\)
4. \(S_2 \leftarrow \text{mergeSort}(S_2, C)\)
5. \(S \leftarrow \text{merge}(S_1, S_2)\)
6. return S
MERGE-SORT EXECUTION TREE (RECURSIVE CALLS)

• An execution of merge-sort is depicted by a binary tree
 • Each node represents a recursive call of merge-sort and stores
 • Unsorted sequence before the execution and its partition
 • Sorted sequence at the end of the execution
 • The root is the initial call
 • The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

- Partition

```
7 2 9 4 3 8 6 1
```

```
7 2 9 4
3 8 6 1
```

```
7 2
9 4
3 8
6 1
```

```
2 7
9 4
3 8
6 1
```

```
2 7
9 4
3 8
6 1
```
EXECUTION EXAMPLE

• Recursive Call, partition

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
    7 2 9 4

    3 8 6 1

    1 2 3 4 6 7 8 9
```
EXECUTION EXAMPLE

- Recursive Call, partition
EXECUTION EXAMPLE

• Recursive Call, base case

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 | 2

7 → 7

7 2 9 4 | 3 8 6 1
EXECUTION EXAMPLE

- Recursive Call, base case
EXECUTION EXAMPLE

- Merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
7 2 | 2 7
```

```
7 → 7 2 → 2 7
```

```
7 → 7 2 → 2
```

```
1 3 8 6 1
```

```
1 3 8 6
```

```
2 7 9 4
```

```
2 7 9 4
```

```
4 9 3 8
```

```
4 9 3 8
```

```
3 8 6 1
```

```
3 8 6
```

```
6 1
```

```
6 1
```

```
1
```

```
1
```
EXECUTION EXAMPLE

- Recursive call, …, base case, merge
EXECUTION EXAMPLE

• Merge
EXECUTION EXAMPLE

- Recursive call, ..., merge, merge
EXECUTION EXAMPLE

- Merge
ANOTHER ANALYSIS OF MERGE-SORT

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The work done at each level is $O(n)$
 - At level i, we partition and merge 2^i sequences of size $\frac{n}{2^i}$
- Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
<th>Cost for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$n/2$</td>
<td>n</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$\frac{n}{2^i}$</td>
<td>n</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$2^{\log n} = n$</td>
<td>$\frac{n}{2^{\log n}} = 1$</td>
<td>n</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Time</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets (< 1K)</td>
<td></td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC</td>
<td>Slow, in-place</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td>For small data sets (< 1K)</td>
<td></td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets (1K – 1M)</td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets (>1M)</td>
<td></td>
</tr>
</tbody>
</table>
QUICK-SORT
QUICK-SORT

- **Quick-sort** is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - **Divide:** pick a random element \(x \) (called **pivot**) and partition \(S \) into
 - \(L \) - elements less than \(x \)
 - \(E \) - elements equal \(x \)
 - \(G \) - elements greater than \(x \)
 - **Recur:** sort \(L \) and \(G \)
 - **Conquer:** join \(L \), \(E \), and \(G \)
ANALYSIS OF QUICK SORT USING RECURRENCE RELATIONS

• Assumption: random pivot expected to give equal sized sublists

• The running time of Quick Sort can be expressed as:
 \[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]

• \(P(n) \) - time to partition on input of size \(n \)

Algorithm quickSort\((S, l, r)\)
Input: Sequence \(S \), indices \(l, r \)
Output: Sequence \(S \) with the elements between \(l \) and \(r \) sorted

1. if \(l \geq r \) then
2. \hspace{1em} return \(S \)
3. \hspace{1em} \(i \leftarrow \text{rand}() \% (r - l) + l \)
 \hspace{1em} //random integer
4. \hspace{1em} \(x \leftarrow S.\text{at}(i) \)
5. \hspace{1em} \((h, k) \leftarrow \text{partition}(x) \)
6. \hspace{1em} quickSort\((S, l, h - 1)\)
7. \hspace{1em} quickSort\((S, k + 1, r)\)
8. \hspace{1em} return \(S \)
PARTITION

• We partition an input sequence as follows:
 • We remove, in turn, each element y from S and
 • We insert y into L, E, or G, depending on the result of the comparison with the pivot x
• Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time
• Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm partition(S, p)
Input: Sequence S, position p of the pivot
Output: Subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, respectively

1. $L, E, G \leftarrow \emptyset$
2. $x \leftarrow S$.remove(p)
3. while ¬S.isEmpty() do
4. $y \leftarrow S$.removeFirst()
5. if $y < x$ then
6. L.addLast(y)
7. else if $y = x$ then
8. E.addLast(y)
9. else // $y > x$
10. G.addLast(y)
11. return L, E, G
SO, THE EXPECTED COMPLEXITY OF QUICK SORT

- Assumption: random pivot expected to give equal sized sublists
- The running time of Quick Sort can be expressed as:

\[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]

\[= 2T\left(\frac{n}{2}\right) + O(n) \]

\[= O(n \log n) \]

Algorithm `quickSort(S,l,r)`

Input: Sequence `S`, indices `l, r`

Output: Sequence `S` with the elements between `l` and `r` sorted

1. if `l ≥ r` then
2. return `S`
3. `i ← rand()%(r – l) + l` //random integer
4. // between `l` and `r`
5. `x ← S.at(i)`
6. `(h,k) ← partition(x)`
7. `quickSort(S,l,h – 1)`
8. `quickSort(S,k + 1,r)`
9. return `S`
QUICK-SORT TREE

• An execution of quick-sort is depicted by a binary tree
 • Each node represents a recursive call of quick-sort and stores
 • Unsorted sequence before the execution and its pivot
 • Sorted sequence at the end of the execution
 • The root is the initial call
 • The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

• Pivot selection
EXECUTION EXAMPLE

- Partition, recursive call, pivot selection
EXECUTION EXAMPLE

- Partition, recursive call, base case

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1
```

```
7 9 7
```

```
1 → 1
```

```
```
EXECUTION EXAMPLE

- Recursive call, ..., base case, join
EXECUTION EXAMPLE

- Recursive call, pivot selection
EXECUTION EXAMPLE

- Partition, ..., recursive call, base case
EXECUTION EXAMPLE

• Join, join

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9
```

```
2 4 3 1 → 1 2 3 4
```

```
7 9 7 → 7 7 9
```

```
1 → 1
```

```
4 3 → 3 4
```

```
9 → 9
```

```
4 → 4
```
WORST-CASE RUNNING TIME

• The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
 • One of L and G has size $n - 1$ and the other has size 0
• The running time is proportional to:
 $$n + (n - 1) + \cdots + 2 + 1 = O(n^2)$$
• Alternatively, using recurrence equations:
 $$T(n) = T(n - 1) + O(n) = O(n^2)$$
EXPECTED RUNNING TIME
REMOVING EQUAL SPLIT ASSUMPTION

• Consider a recursive call of quick-sort on a sequence of size s
 • Good call: the sizes of L and G are each less than $\frac{3s}{4}$
 • Bad call: one of L and G has size greater than $\frac{3s}{4}$

• A call is good with probability $1/2$
 • $1/2$ of the possible pivots cause good calls:
EXPECTED RUNNING TIME

- **Probabilistic Fact:** The expected number of coin tosses required in order to get k heads is 2^k (e.g., it is expected to take 2 tosses to get heads)

- For a node of depth i, we expect
 - $\frac{i}{2}$ ancestors are good calls
 - The size of the input sequence for the current call is at most $\left(\frac{3}{4}\right)^{\frac{i}{2}} n$

- Therefore, we have
 - For a node of depth $\frac{2 \log_2 n}{3}$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$

- The amount or work done at the nodes of the same depth is $O(n)$

- Thus, the expected running time of quick-sort is $O(n \log n)$
IN-PLACE QUICK-SORT

• Quick-sort can be implemented to run in-place
• In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 • the elements less than the pivot have indices less than h
 • the elements equal to the pivot have indices between h and k
 • the elements greater than the pivot have indices greater than k
• The recursive calls consider
 • elements with indices less than h
 • elements with indices greater than k

Algorithm inPlaceQuickSort(S, l, r)
Input: Array S, indices l, r
Output: Array S with the elements between l and r sorted

1. if $l \geq r$ then
2. return S
3. $i \leftarrow \text{rand()}(r - l) + l$ //random integer
4. //between l and r
5. $x \leftarrow S[i]$
6. $(h, k) \leftarrow \text{inPlacePartition}(x)$$
7. \text{inPlaceQuickSort}(S, l, h - 1)$
8. \text{inPlaceQuickSort}(S, k + 1, r)$
9. return S
IN-PLACE PARTITIONING

• Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

\[
\begin{array}{cccccccccccccc}
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9
\end{array}
\]

(pivot = 6)

• Repeat until j and k cross:
 • Scan j to the right until finding an element $\geq x$.
 • Scan k to the left until finding an element $< x$.
 • Swap elements at indices j and k
Summary of Sorting Algorithms (So Far)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>(O(n^2))</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>(O(n^2)) WC, AC</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td>(O(n)) BC</td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>(O(n \log n))</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, For large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. (O(n \log n)) AC, BC</td>
<td>Randomized, in-place</td>
</tr>
<tr>
<td></td>
<td>(O(n^2)) WC</td>
<td>Fastest, for large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>(O(n \log n))</td>
<td>Sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, for huge data sets</td>
</tr>
</tbody>
</table>
SORTING LOWER BOUND
• Many sorting algorithms are comparison based.
 • They sort by making comparisons between pairs of objects
 • Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
• Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort \(n \) elements, \(x_1, x_2, \ldots, x_n \).
Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree.
DECISION TREE HEIGHT

- The height of the decision tree is a lower bound on the running time.
- Every input permutation must lead to a separate leaf output.
- If not, some input ...4...5... would have the same output ordering as ...5...4..., which would be wrong.
- Since there are $n! = 1 \times 2 \times \cdots \times n$ leaves, the height is at least $\log(n!)$.
THE LOWER BOUND

• Any comparison-based sorting algorithm takes at least $\log(n!)$ time

\[
\log(n!) \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} = \frac{n}{2} \log \frac{n}{2}
\]

• That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.
BUCKET-SORT AND RADIX-SORT

CAN WE SORT IN LINEAR TIME?

1, c → 3, a → 3, b → 7, d → 7, g → 7, e

B

0 1 2 3 4 5 6 7 8 9
Let be S be a sequence of n (key, element) items with keys in the range $[0, N - 1]$.

Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)

- Phase 1: Empty sequence S by moving each entry into its bucket $B[k]$
- Phase 2: for $i \leftarrow 0 \ldots N - 1$, move the items of bucket $B[i]$ to the end of sequence S

Analysis:
- Phase 1 takes $O(n)$ time
- Phase 2 takes $O(n + N)$ time
- Bucket-sort takes $O(n + N)$ time

Algorithm bucketSort(S, N)

Input: Sequence S of entries with integer keys in the range $[0, N - 1]$

Output: Sequence S sorted in nondecreasing order of the keys

1. $B \leftarrow$ array of N empty sequences
2. **for each** entry $e \in S$ **do**
3. $k \leftarrow e.key()$
4. remove e from S
5. insert e at the end of bucket $B[k]$
6. **for** $i \leftarrow 0 \ldots N - 1$ **do**
7. **for each** entry $e \in B[i]$ **do**
8. remove e from bucket $B[i]$
9. insert e at the end of S
EXAMPLE

• Key range [37, 46] – map to buckets [0,9]

Phase 1

Phase 2
PROPERTIES AND EXTENSIONS

• **Properties**
 - **Key-type**
 - The keys are used as indices into an array and cannot be arbitrary objects
 - **No external comparator**
 - **Stable sorting**
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

• **Extensions**
 - Integer keys in the range \([a, b]\)
 - Put entry \(e\) into bucket \(B[k - a]\)
 - String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the index \(i(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put item \(e\) into bucket \(B[i(k)]\)
LEXICOGRAPHIC ORDER

• Given a list of tuples:

 \[(7,4,6) \ (5,1,5) \ (2,4,6) \ (2,1,4) \ (5,1,6) \ (3,2,4)\]

• After sorting, the list is in lexicographical order:

 \[(2,1,4) \ (2,4,6) \ (3,2,4) \ (5,1,5) \ (5,1,6) \ (7,4,6)\]
LEXICOGRAPHIC ORDER FORMALIZED

• A d-tuple is a sequence of d keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the i-th dimension of the tuple

 • Example - the Cartesian coordinates of a point in space is a 3-tuple (x, y, z)

• The lexicographic order of two d-tuples is recursively defined as follows

 $(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d) \iff$

 $x_1 < y_1 \lor (x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d))$

• i.e., the tuples are compared by the first dimension, then by the second dimension, etc.
EXERCISE
LEXICOGRAPHIC ORDER

• Given a list of 2-tuples, we can order the tuples lexicographically by applying a stable sorting algorithm two times:
 (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

• Possible ways of doing it:
 • Sort first by 1st element of tuple and then by 2nd element of tuple
 • Sort first by 2nd element of tuple and then by 1st element of tuple

• Show the result of sorting the list using both options
EXERCISE
LEXICOGRAPHIC ORDER

• (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)
• Using a stable sort,
 • Sort first by 1st element of tuple and then by 2nd element of tuple
 • Sort first by 2nd element of tuple and then by 1st element of tuple
• Option 1:
 • 1st sort: (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)
 • 2nd sort: (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7) - WRONG
• Option 2:
 • 1st sort: (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)
 • 2nd sort: (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3) - CORRECT
LEXICOGRAPHIC-SORT

- Let \(C_i \) be the comparator that compares two tuples by their \(i \)-th dimension
- Let \(\text{stableSort}(S, C) \) be a stable sorting algorithm that uses comparator \(C \)
- Lexicographic-sort sorts a sequence of \(d \)-tuples in lexicographic order by executing \(d \) times algorithm \(\text{stableSort} \), one per dimension
- Lexicographic-sort runs in \(O(dT(n)) \) time, where \(T(n) \) is the running time of \(\text{stableSort} \)

Algorithm lexicographicSort(S)

Input: Sequence \(S \) of \(d \)-tuples

Output: Sequence \(S \) sorted in lexicographic order

1. for \(i \leftarrow d \ldots 1 \) do
2. \(\text{stableSort}(S, C_i) \)
RADIX-SORT

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N - 1]$.
- Radix-sort runs in time $O(d(n + N))$.

Algorithm $\text{radixSort}(S, N)$

Input: Sequence S of d-tuples such that
$(0, \ldots, 0) \leq (x_1, \ldots, x_d)$ and
$(x_1, \ldots, x_d) \leq (N - 1, \ldots, N - 1)$
for each tuple (x_1, \ldots, x_d) in S

Output: Sequence S sorted in lexicographic order

1. for $i \leftarrow d$ \ldots 1 do
2. set the key k of each entry $(k, (x_1, \ldots, x_d))$ of S to ith dimension x_i
3. $\text{bucketSort}(S, N)$
EXAMPLE
RADIX-SORT FOR BINARY NUMBERS

• Sorting a sequence of 4-bit integers

• \(d = 4, N = 2 \) so \(O(d(n + N)) = O(4(n + 2)) = O(n) \)

Sort by \(d=4 \) Sort by \(d=3 \) Sort by \(d=2 \) Sort by \(d=1 \)
SUMMARY OF SORTING ALGORITHMS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, for large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$</td>
<td>Randomized, in-place</td>
</tr>
<tr>
<td></td>
<td>AC, BC</td>
<td>Fastest, for in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n^2)$ WC</td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, for huge data sets</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>$O(d(n + N))$, d #digits, N range of digit values</td>
<td>Stable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fastest, only for integers</td>
</tr>
</tbody>
</table>
THE SELECTION PROBLEM

• Given an integer k and n elements $\{x_1, x_2, \ldots, x_n\}$, taken from a total order, find the k-th smallest element in this set.
 • Also called order statistics, the ith order statistic is the ith smallest element
 • Minimum - $k = 1$ - 1st order statistic
 • Maximum - $k = n$ - nth order statistic
 • Median - $k = \left\lfloor \frac{n}{2} \right\rfloor$
 • etc
THE SELECTION PROBLEM

• Naïve solution - SORT!

• We can sort the set in $O(n \log n)$ time and then index the k-th element.

 7 4 9 6 2 → 2 4 6 7 9

 k=3

• Can we solve the selection problem faster?
THE MINIMUM (OR MAXIMUM)

Algorithm minimum(A)
Input: Array A
Output: minimum element in A
1. \(m \leftarrow A[1] \)
2. for \(i \leftarrow 2 \ldots n \) do
3. \(m \leftarrow \min(m, A[i]) \)
4. return \(m \)

- Running Time
 - \(O(n) \)
- Is this the best possible?
QUICK-SELECT

- **Quick-select** is a randomized selection algorithm based on the prune-and-search paradigm:
 - **Prune**: pick a random element x (called pivot) and partition S into
 - L elements $< x$
 - E elements $= x$
 - G elements $> x$
 - **Search**: depending on k, either answer is in E, or we need to recur on either L or G

- **Note**: Partition same as Quicksort

$$k \leq |L|$$

$$k > |L| + |E|$$

$$k' = k - |L| - |E|$$

$$|L| < k \leq |L| + |E|$$

(done)
QUICK-SELECT VISUALIZATION

- An execution of quick-select can be visualized by a recursion path
 - Each node represents a recursive call of quick-select, and stores \(k \) and the remaining sequence

\[
\begin{align*}
k &= 5, S = (7, 4, 9, 3, 2, 6, 5, 1, 8) \\
k &= 2, S = (7, 4, 9, 6, 5, 8) \\
k &= 2, S = (7, 4, 6, 5) \\
k &= 1, S = (7, 6, 5) \\
5
\end{align*}
\]
EXERCISE

• Best Case - even splits (n/2 and n/2)
• Worst Case - bad splits (1 and n-1)

• Derive and solve the recurrence relation corresponding to the best case performance of randomized quick-select.
• Derive and solve the recurrence relation corresponding to the worst case performance of randomized quick-select.
EXPECTED RUNNING TIME

• Consider a recursive call of quick-select on a sequence of size s
 • Good call: the size of L and G is at most $\frac{3s}{4}$
 • Bad call: the size of L and G is greater than $\frac{3s}{4}$

• A call is good with probability $1/2$
 • $1/2$ of the possible pivots cause good calls:

```
Good call
7 2 9 4 3 7 6 1 9
  → 2 4 3 1    7 9 7 1 → 1

Bad call
7 2 9 4 3 7 6 1
  → 1 7 2 9 4 3 7 6
```

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```

Bad pivots Good pivots Bad pivots
EXPECTED RUNNING TIME

- **Probabilistic Fact #1:** The expected number of coin tosses required in order to get one head is two.

- **Probabilistic Fact #2:** Expectation is a linear function:

 \[E(X + Y) = E(X) + E(Y) \]

 \[E(cX) = cE(X) \]

- Let \(T(n) \) denote the expected running time of quick-select.

- By Fact #2, \(T(n) < T\left(\frac{3n}{4}\right) + bn \) *(expected # of calls before a good call)*

- By Fact #1, \(T(n) < T\left(\frac{3n}{4}\right) + 2bn \)

- That is, \(T(n) \) is a geometric series: \(T(n) < 2bn + 2b \left(\frac{3}{4}\right) n + 2b \left(\frac{3}{4}\right)^2 n + 2b \left(\frac{3}{4}\right)^3 n + \cdots \)

- So \(T(n) \) is \(O(n) \).

- We can solve the selection problem in \(O(n) \) expected time.
DETERMINISTIC SELECTION

- We can do selection in $O(n)$ worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into $\frac{n}{5}$ sets of 5 each
 - Find a median in each set
 - Recursively find the median of the “baby” medians.
- See Exercise C-12.56 for details of analysis.
INTERVIEW QUESTION 1

• You are given two sorted arrays, A and B, where A has a large enough buffer at the end to hold B. Write a method to merge B into A in sorted order.
INTERVIEW QUESTION 2

• Write a method to sort an array of strings so that all the anagrams are next to each other.
 • Two words are anagrams if they use the exact same letters, i.e., race and care are anagrams.

INTERVIEW QUESTION 3

• Imagine you have a 2 TB file with one string per line. Explain how you would sort the file.