CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DEPTH-FIRST SEARCH
DEPTH-FIRST SEARCH

- **Depth-first search (DFS)** is a general technique for traversing a graph.
- A DFS traversal of a graph \(G \)
 - Visits all the vertices and edges of \(G \)
 - Determines whether \(G \) is connected
 - Computes the connected components of \(G \)
 - Computes a spanning forest of \(G \)

- DFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time.
- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs as what Euler tour is to binary trees.
DFS ALGORITHM FROM A VERTEX

Algorithm DFS(G, u)

Input: A graph G and a vertex u of G

Output: A collection of vertices reachable from u, with their discovery edges

1. Mark u as visited
2. for each edge e = (u, v) ∈ G.outgoingEdges(u) do
3. if v has not been visited then
4. Record e as a discovery edge for v
5. DFS(G, v)
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

\[
I(A) = \{B, C, D, E\} \\
I(B) = \{A, C, F\} \\
I(B) = \{A, C, F\} \\
I(C) = \{A, B, D, E\} \\
I(C) = \{A, B, D, E\} \\
I(C) = \{A, B, D, E\} \\
I(C) = \{A, B, D, E\}
\]
\[I(C) = \{A, B, D, E\} \]

\[I(D) = \{A, C\} \]

\[I(E) = \{A, C\} \]
Example

\[I(C) = \{A, B, D, E\} \]
\[I(B) = \{A, C, F\} \]

\[I(G) = \emptyset \]

\[I(F) = \{B\} \]

\[I(B) = \{A, C, F\} \]
\[I(A) = \{A, B, C, D\} \]
EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited
 • Label edges as discovery or back edges
DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic strategy for exploring a maze
 • We mark each intersection, corner and dead end (vertex) visited
 • We mark each corridor (edge) traversed
 • We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
DFS ALGORITHM

- The algorithm uses a mechanism for setting and getting “labels” of vertices and edges

Algorithm DFS(G)

Input: Graph G

Output: Labeling of the edges of G as discovery edges and back edges

1. for each \(v \in G \).vertices() do
2. \(\text{setLabel}(v, \text{UNEXPLORED}) \)
3. for each \(e \in G \).edges() do
4. \(\text{setLabel}(e, \text{UNEXPLORED}) \)
5. for each \(v \in G \).vertices() do
6. if getLabel(v) = \text{UNEXPLORED} then
7. DFS(G,v)

Algorithm DFS(G,v)

Input: Graph G and a start vertex v

Output: Labeling of the edges of G in the connected component of v as discovery edges and back edges

1. setLabel(v, \text{VISITED})
2. for each \(e \in G \).outgoingEdges(v) do
3. if getLabel(e) = \text{UNEXPLORED} then
4. \(w \leftarrow G \).opposite(v,e)
5. if getLabel(w) = \text{UNEXPLORED} then
6. setLabel(e, \text{DISCOVERY})
7. DFS(G,w)
8. else
9. setLabel(e, \text{BACK})
PROPERTIES OF DFS

• Property 1
 • DFS(G, v) visits all the vertices and edges in the connected component of v

• Property 2
 • The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v
ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as \textit{UNEXPLORED}
 • once as \textit{VISITED}

• Each edge is labeled twice
 • once as \textit{UNEXPLORED}
 • once as \textit{DISCOVERY} or \textit{BACK}

• Function $\text{DFS}(G, v)$ and the method $\text{outgoingEdges}(\cdot)$ are called once for each vertex

• DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATION
PATH FINDING

- We can specialize the DFS algorithm to find a path between two given vertices \(u \) and \(z \) using the template method pattern
- We call DFS\((G, u)\) with \(u \) as the start vertex
- We use a stack \(S \) to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex \(z \) is encountered, we return the path as the contents of the stack

Algorithm pathDFS\((G, v, z)\)

Input: Graph \(G \), a start vertex \(v \), a goal vertex \(z \)

Output: Path between \(v \) and \(z \)

1. setLabel\((v, VISITED)\)
2. \(S.push(v) \)
3. if \(v = z \) then
4. return \(S.elements() \)
5. for each \(e \in G.outgoingEdges(v) \) do
6. if getLabel\((e) = UNEXPLRED) \) then
7. \(w \leftarrow G.opposite(v, e) \)
8. if getLabel\((w) = UNEXPLRED \) then
9. setLabel\((e, DISCOVERY) \)
10. \(S.push(e) \)
11. pathDFS\((G,w) \)
12. \(S.pop() \)
13. else
14. setLabel\((e, BACK) \)
15. \(S.pop() \)
We can specialize the DFS algorithm to find a simple cycle using the template method pattern.

We use a stack S to keep track of the path between the start vertex and the current vertex.

As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w.

Algorithm

```plaintext
Algorithm cycleDFS(G, v)
Input: Graph $G$, a start vertex $v$
Output: Cycle containing $v$
1. setLabel($v$, VISITED)
2. $S.push(v)$
3. for each $e \in G.outgoingEdges(v)$ do
4.   if getLabel($e$) = UNEXPLORRED then
5.     $w \leftarrow G.opposite(v, e)$
6.     $S.push(e)$
7.   if getLabel($w$) = UNEXPLORED then
8.     setLabel($e$, DISCOVERY)
9.     cycleDFS($G, w$)
10. $S.pop()$
11. else
12.   Stack $T \leftarrow \emptyset$
13.   repeat
14.     $T.push(S.pop())$
15.   until $T.top() = w$
16.   return $T.elements()$
17. $S.pop()$
```
DIRECTED DFS

• We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.

• In the directed DFS algorithm, we have four types of edges:
 • discovery edges
 • back edges
 • forward edges
 • cross edges

• A directed DFS starting at a vertex s determines the vertices reachable from s.
REACHABILITY

- DFS tree rooted at ν: vertices reachable from ν via directed paths
STRONG CONNECTIVITY

- Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

• Pick a vertex \(v \) in \(G \)

• Perform a DFS from \(v \) in \(G \)
 • If there’s a \(w \) not visited, print “no”

• Let \(G' \) be \(G \) with edges reversed

• Perform a DFS from \(v \) in \(G' \)
 • If there’s a \(w \) not visited, print “no”
 • Else, print “yes”

• Running time: \(O(n + m) \)
STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the subgraph

• Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).

BREADTH-FIRST SEARCH
BREADTH-FIRST SEARCH

• Breadth-first search (BFS) is a general technique for traversing a graph

• A BFS traversal of a graph G
 • Visits all the vertices and edges of G
 • Determines whether G is connected
 • Computes the connected components of G
 • Computes a spanning forest of G

• BFS on a graph with n vertices and m edges takes $O(n + m)$ time

• BFS can be further extended to solve other graph problems
 • Find and report a path with the minimum number of edges between two given vertices
 • Find a simple cycle, if there is one
The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm BFS\((G)\)

Input: Graph G

Output: Labeling of the edges and partition of the vertices of G

1. for each \(v \in G\).vertices() do
2. \(\text{setLabel}(v, \text{UNEXPLORRED})\)
3. for each \(e \in G\).edges() do
4. \(\text{setLabel}(e, \text{UNEXPLORRED})\)
5. for each \(v \in G\).vertices() do
6. if \(\text{getLabel}(v) = \text{UNEXPLORRED}\) then
7. BFS\((G,v)\)

Algorithm BFS\((G,s)\)

Input: Graph G, a start vertex s

1. List \(L_0 \leftarrow \{s\}\)
2. \(\text{setLabel}(s, \text{VISITED})\)
3. \(i \leftarrow 0\)
4. while \(\neg L_i\).isEmpty() do
5. List \(L_{i+1} \leftarrow \emptyset\)
6. for each \(v \in L_i\) do
7. for each \(e \in G\).outgoingEdges\((v)\) do
8. if \(\text{getLabel}(e) = \text{UNEXPLORRED}\) then
9. \(w \leftarrow G\).opposite\((v,e)\)
10. if \(\text{getLabel}(w) = \text{UNEXPLORRED}\) then
11. \(\text{setLabel}(e, \text{DISCOVERY})\)
12. \(\text{setLabel}(w, \text{VISITED})\)
13. \(L_{i+1} \leftarrow L_{i+1} \cup \{w\}\)
14. else
15. \(\text{setLabel}(e, \text{CROSS})\)
16. \(i \leftarrow i + 1\)
EXAMPLE
EXAMPLE

- **A**: unexplored vertex
- **A**: visited vertex
- **unexplored edge**
- **discovery edge**
- **cross edge**

The diagram illustrates the process of exploring vertices in a graph. Each level (L0, L1, L2) represents a different stage of the exploration process. The vertices are colored and connected by edges to show the progression from unexplored to visited.
EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex F
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited and note the level they are in
 • Label edges as discovery or cross edges
PROPERTIES

• Notation
 • G_s: connected component of s

• Property 1
 • $\text{BFS}(G, s)$ visits all the vertices and edges of G_s

• Property 2
 • The discovery edges labeled by $\text{BFS}(G, s)$ form a spanning tree T_s of G_s

• Property 3
 • For each vertex $v \in L_i$
 • The path of T_s from s to v has i edges
 • Every path from s to v in G_s has at least i edges
ANALYSIS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence L_i

• Method outgoingEdges() is called once for each vertex

• BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \text{deg}(v) = 2m$
APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 • Compute the connected components of G
 • Compute a spanning forest of G
 • Find a simple cycle in G, or report that G is a forest
 • Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS VS. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Applications:
- DFS (Depth-First Search): Spanning forest, connected components, paths, cycles, Shortest paths, Biconnected components
- BFS (Breadth-First Search): Spanning forest, connected components, paths, cycles, Shortest paths
DFS VS. BFS

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges
TOPOLOGICAL ORDERING
DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph that has no directed cycles.

• A topological ordering of a digraph is a numbering v_1, \ldots, v_n
 • Of the vertices such that for every edge (v_i, v_j), we have $i < j$.

• Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints.

• Theorem - A digraph admits a topological ordering if and only if it is a DAG.
APPLICATION

• Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started
EXERCISE
TOPOLOGICAL SORTING

- Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)

A typical student day

1. wake up
2. study computer sci.
3. eat
4. nap
5. more c.s.
6. work out
7. play
8. write c.s. program
9. bake cookies
10. sleep
11. dream about graphs
ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm \texttt{TopologicalSort}(G)

\textbf{Input:} Directed Acyclic Graph (DAG) \(G \)

\textbf{Output:} Topological ordering of \(G \)

1. \(H \leftarrow G \)
2. \(n \leftarrow G.\text{numVertices}() \)
3. \textbf{while} \(\neg H.\text{isEmpty}() \) \textbf{do}
 4. Let \(v \) be a vertex with no outgoing edges
 5. Label \(v \leftarrow n \)
 6. \(n \leftarrow n - 1 \)
 7. \(H.\text{removeVertex}(v) \)
IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search
• \(O(n + m) \) time.

Algorithm topologicalDFS(G)
Input: DAG \(G \)
Output: Topological ordering of \(G \)
1. \(n \leftarrow G.\text{numVertices()} \)
2. Initialize all vertices as UNEXPLOR ED
3. for each vertex \(v \in G.\text{vertices()} \) do
4. \hspace{1em} if getLabel\((v) = \text{UNEXPLOR ED} \) then
5. \hspace{2em} topologicalDFS\((G,v) \)

Algorithm topologicalDFS\((G,v) \)
Input: DAG \(G \), start vertex \(v \)
Output: Labeling of the vertices of \(G \) in the connected component of \(v \)
1. setLabel\((v, \text{VISITED}) \)
2. for each \(e \in G.\text{outgoingEdges}(v) \) do
3. \hspace{1em} \(w \leftarrow G.\text{opposite}(v,e) \)
4. \hspace{2em} if getLabel\((w) = \text{UNEXPLOR ED} \) then
5. \hspace{3em} // \(e \) is a discovery edge
6. \hspace{2em} topologicalDFS\((G,w) \)
7. else
8. \hspace{2em} // \(e \) is a forward, cross, or back edge
9. Label \(v \) with topological number \(n \)
10. \(n \leftarrow n - 1 \)
TOPOLOGICAL SORTING EXAMPLE
MINIMUM SPANNING TREES
MINIMUM SPANNING TREE

• **Minimum spanning tree (MST)**
 - Spanning tree of a weighted graph with minimum total edge weight

• **Applications**
 - Communications networks
 - Transportation networks
EXERCISE
MST

• Show an MST of the following graph.
CYCLE PROPERTY

Cycle Property:
- Let T be a minimum spanning tree of a weighted graph G.
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T.
- For every edge f of C, $\text{weight}(f) \leq \text{weight}(e)$.

Proof by contradiction:
- If $\text{weight}(f) > \text{weight}(e)$ we can get a spanning tree of smaller weight by replacing e with f.

Replacing f with e yields a better spanning tree.
PARTITION PROPERTY

- **Partition Property:**
 - Consider a partition of the vertices of G into subsets U and V
 - Let e be an edge of minimum weight across the partition
 - There is a minimum spanning tree of G containing edge e

- **Proof by contradiction:**
 - Let T be an MST of G
 - If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
 - By the cycle property, $\text{weight}(f) \leq \text{weight}(e)$
 - Thus, $\text{weight}(f) = \text{weight}(e)$
 - We obtain another MST by replacing f with e
PRIM-JARNIK’S ALGORITHM

- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v a label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to u
PRIM-JARNIK’S ALGORITHM

• An adaptable priority queue stores the vertices outside the cloud
 • Key: distance, \(D[v] \)
 • Element: vertex \(v \)
 • \(Q.\text{replace}(i,k) \) changes the key of an item

• We store three labels with each vertex \(v \):
 • Distance \(D[v] \)
 • Parent edge in MST \(P[v] \)
 • Locator in priority queue

Algorithm PrimJarnikMST(\(G \))

Input: A weighted connected graph \(G \)
Output: A minimum spanning tree \(T \) of \(G \)

1. Pick any vertex \(s \) of \(G \)
2. \(D[s] \leftarrow 0; \ P[s] \leftarrow \emptyset \)
3. for each vertex \(v \neq s \) do
 4. \(D[v] \leftarrow \infty; \ P[v] \leftarrow \emptyset \)
 5. \(T \leftarrow \emptyset \)
 6. Priority queue \(Q \) of vertices with \(D[v] \) as the key
 7. while \(\neg Q.\text{isEmpty}() \) do
 8. \(u \leftarrow Q.\text{removeMin}() \)
 9. Add vertex \(u \) and edge \(P[u] \) to \(T \)
 10. for each \(e \in u.\text{outgoingEdges()} \) do
 11. \(v \leftarrow G.\text{opposite}(u,e) \)
 12. if \(e.\text{weight}() < D[v] \) then
 13. \(D[v] \leftarrow e.\text{weight}(); \ P[v] \leftarrow e \)
 14. \(Q.\text{replace}(v,D[v]) \)
 15. return \(T \)
EXAMPLE
EXAMPLE
EXERCISE
PRIM’S MST ALGORITHM

• Show how Prim’s MST algorithm works on the following graph, assuming you start with SFO
 • Show how the MST evolves in each iteration.
ANALYSIS

• **Graph operations**
 - Method incidentEdges is called once for each vertex

• **Label operations**
 - We set/get the distance, parent and locator labels of vertex \(z \) \(O(\text{deg}(z)) \) times
 - Setting/getting a label takes \(O(1) \) time

• **Priority queue operations**
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(O(\log n) \) time
 - The key of a vertex \(w \) in the priority queue is modified at most \(\text{deg}(w) \) times, where each key change takes \(O(\log n) \) time

• **Prim-Jarnik’s algorithm** runs in \(O((n + m) \log n) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\Sigma_v \text{deg}(v) = 2m \)
 - If the graph is connected the running time is \(O(m \log n) \)