Lecture Notes - Red-Black Trees

- Discuss self-balancing.
- AVL Trees + (2,4) trees require many "restructurings."
- Red-Black Trees will only require AVL "restructurings" for balance.

Definition:

- Red-Black tree is a binary search tree with nodes colored red and black such that:
 - Root property: The root is black.
 - External property: Every external node is black.
 - Red property: Children of a red node are black.
 - Depth property: All external nodes have the same black depth, defined as the number of black ancestors.

Example:

![Red-Black Tree Diagram](image)

Note: relationship to properties.

Then, the height of a red-black tree storing n elements is $O(\log n)$.

Proof: Recall the property that the height of a binary tree must be $\geq \log_{2}^{n}$.

Let $h(x)$ be the black nodes in every x-to-leaf path. (All the same by Prop 4).

So a subtree at x has at least $2^{\text{height}(x)}$ nodes, by lower bound.

$\text{BH}(\text{root}) \geq \log \frac{n}{2}$ by Prop III, otherwise double red occurs.

$\text{BH}(\text{root}) \geq \log \frac{n}{2}$

$\log \frac{n}{2} \geq \frac{1}{2} \log n$ for $n \geq 2^{\log \frac{n}{2} - 1}$
- Get operation identical to BST.

- Insertion -
 - Begin with standard insertion. If it is the first entry (root) label as black.
 - Otherwise label as red. However, this could violate red property.
 - We call this a double red at the inserted node x.

Example of double red

- Example of regular insert

To remedy double red, we have 2 cases.
(i) sibling s of y is black
(ii) sibling s of y is red

- Case 1 - Sibling s of y is black.
 - Resolution - Tri-node restructuring. After color b = black and a, c as red.

4 possible configurations:

Note - no change in any black depths.
- Case 2 - sibling s of y is red
 - resolution - recolor. y becomes red (unless it's the root)
 y's become black

- Note, black depth is unaffected unless it's the root. In that case it increases by 1.

- However, changing y to red might propagate double red problem higher to the tree. Repeat two cases at z until a recolor eliminates problem, a restructure eliminates problem.

- Complexity
 - $O(\log n)$ search/insert
 - $O(\log n)$ recolorings - half the height of the tree
 - $O(1)$ tri-node restructurings
 - Total: $O(\log n)$

- Activity - Insert the following into a red-black tree:
 30, 40, 24, 58, 48, 26, 11, 13

- Answer
 2 recolors @ 58, 13
 1 restructure @ 48
- Deletion -

- Begin with standard BST removal.

- If the removed node is red, no structural changes or any black depth, nor violate red violations.

- If it was black, it must have had EIHT level, and both children were external as one was a red node with a external children, i.e., we created a black depth deficit. In the second case, recolor as black. In the first, we have.

- Let p be node promoted upon removal. Define let y be sibling of p.

- When p is black, temporarily label as "double black" and must remedy.

- Case 1: Sibling y of p is black and has a red child x

 - Resolution: tri-node restructuring. z will be parent of y.

 - color a, c as black, b gets former value of z.

 - Note - path to p has one more black node now, others are unaffected.

- Example:

```
          Z
          |
          y
          |
         10
         |
         X
         30
          |
         p
          |
         40
```

```
          a
          |
         10
          |
         30
          |
         c
         40
          |
         p
```

```
          Z
          |
          y
          |
         20
          |
         30
          |
         p
          |
         40
```
- **Case 2**: The sibling y of p is black and both children of y are black.

 Resolution: Recolor y becomes red. Now consider parent z of y.

 (because decrease in black depth through y)

 if z is red, color black and problem resolved.

 if z is black, color double-black propagating the problem.

 Examples:

 ![Diagram 1](image1.png)

 ![Diagram 2](image2.png)

- **Case 3**: Sibling y of p is red.

 Let z be common parent. It must be black because y is red.

 Resolution: Adjustment through rotation + recolor.

 Rotate about y and z - recolor y black and z red.

 After, reconsider problem at p: Sibling of p is black so case 1 or 2 applies.

 Next application must be last because case 1 is terminal and case 2 is terminal given that parent of p is now red.

 Example:

 ![Diagram 3](image3.png)

 Performance (complexity)

 - Find - $O(\log n)$
 - Recoloring - $O(\log n)$
 - Restructuring - $O(1)$ - why it's better than AVL + (2,4) trees.
 - Total - $O(\log n)$
- Activity - Start with the following:

```
     30
   /   \
  24   48
 /   / \
11  26  40  58
   /     \
  13     26
```

and remove 30 and then 48 and then 58

- answer
 - remove 30 causes no imbalance
 - remove 48 case 0 promoted node was red with 2 black children
 - remove 50 case 3 rotate + recolor
 then case 2 reoder :

```
     24
   /   \
  11   40
   /     \
  13     26
```