CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DEPTH-FIRST SEARCH
DEPTH-FIRST SEARCH

- **Depth-first search (DFS)** is a general technique for traversing a graph.
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs as what Euler tour is to binary trees.
DFS ALGORITHM FROM A VERTEX

Algorithm DFS(G, u)

Input: A graph G and a vertex u of G

Output: A collection of vertices reachable from u, with their discovery edges

1. Mark u as visited
2. for each edge $e = (u, v) \in G$.outgoingEdges(u) do
 3. if v has not been visited then
 4. Record e as a discovery edge for v
 5. DFS(G, v)
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

\[I(A) = \{B, C, D, E\} \]

\[I(B) = \{A, C, F\} \]
\[I(B) = \{A, C, F\} \]

\[I(C) = \{A, B, D, E\} \]
\[I(C) = \{A, B, D, E\} \]

\[I(C) = \{A, B, D, E\} \]
\[I(C) = \{A, B, D, E\} \]
\[I(C) = \{A, B, D, E\} \]

\[I(D) = \{A, C\} \]

\[I(E) = \{A, C\} \]

\[I(C) = \{A, B, D, E\} \]

\[I(D) = \{A, C\} \]

\[I(E) = \{A, C\} \]
$I(C) = \{A, B, D, E\}$

$I(B) = \{A, C, F\}$

$I(F) = \{B\}$

$I(B) = \{A, C, F\}$

$I(A) = \{A, B, C, D\}$

$I(G) = \emptyset$
EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited
 • Label edges as discovery or back edges
DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic strategy for exploring a maze
 • We mark each intersection, corner and dead end (vertex) visited
 • We mark each corridor (edge) traversed
 • We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
The algorithm uses a mechanism for setting and getting "labels" of vertices and edges.

Algorithm DFS(G)

Input: Graph G

Output: Labeling of the edges of G as discovery edges and back edges

1. for each \(v \in G \text{.vertices()} \) do
2. \(\text{setLabel}(v, \text{UNEXPLORED}) \)
3. for each \(e \in G\text{.edges()} \) do
4. \(\text{setLabel}(e, \text{UNEXPLORED}) \)
5. for each \(v \in G\text{.vertices()} \) do
6. if getLabel\((v) = \text{UNEXPLORED} \) then
7. DFS\((G,v)\)

Algorithm DFS(G,v)

Input: Graph G and a start vertex v

Output: Labeling of the edges of G in the connected component of v as discovery edges and back edges

1. \(\text{setLabel}(v, \text{VISITED}) \)
2. for each \(e \in G\text{.outgoingEdges}(v) \) do
3. if getLabel\((e) = \text{UNEXPLORED} \) then
4. \(w \leftarrow G\text{.opposite}(v,e) \)
5. if getLabel\((w) = \text{UNEXPLORED} \) then
6. \(\text{setLabel}(e, \text{DISCOVERY}) \)
7. DFS\((G,w)\)
8. else
9. \(\text{setLabel}(e, \text{BACK}) \)
PROPERTIES OF DFS

• Property 1
 • $\text{DFS}(G, v)$ visits all the vertices and edges in the connected component of v

• Property 2
 • The discovery edges labeled by $\text{DFS}(G, v)$ form a spanning tree of the connected component of v
ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or BACK

• Function DFS(G, v) and the method outgoingEdges() are called once for each vertex

• DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATION
PATH FINDING

- We can specialize the DFS algorithm to find a path between two given vertices \(u \) and \(z \) using the template method pattern
- We call DFS\((G, u)\) with \(u \) as the start vertex
- We use a stack \(S \) to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex \(z \) is encountered, we return the path as the contents of the stack

Algorithm pathDFS\((G, v, z)\)

Input: Graph \(G \), a start vertex \(v \), a goal vertex \(z \)

Output: Path between \(v \) and \(z \)

1. setLabel\((v, VISITED)\)
2. \(S.push(v) \)
3. if \(v = z \) then
4. return \(S.elements() \)
5. for each \(e \in G.outgoingEdges(v) \) do
6. if getLabel\((e) = UNEXPLORED\) then
7. \(w \leftarrow G.opposite(v, e) \)
8. if getLabel\((w) = UNEXPLORED \) then
9. setLabel\((e, DISCOVERY)\)
10. \(S.push(e) \)
11. pathDFS\((G, w)\)
12. \(S.pop() \)
13. else
14. setLabel\((e, BACK)\)
15. \(S.pop() \)
APPLICATION
CYCLE FINDING

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

Algorithm cycleDFS(G, v)
Input: Graph G, a start vertex v
Output: Cycle containing v
1. setLabel(v, VISITED)
2. S.push(v)
3. for each $e \in G$.outgoingEdges(v) do
4. if getLabel(e) = UNEXPLORED then
5. $w \leftarrow G$.opposite(v, e)
6. S.push(e)
7. if getLabel(w) = UNEXPLORED then
8. setLabel(e, DISCOVERY)
9. cycleDFS(G, w)
10. S.pop()
11. else
12. Stack $T \leftarrow \emptyset$
13. repeat
14. T.push(S.pop())
15. until T.top() = w
16. return T.elements()
17. S.pop()
DIRECTED DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.
- In the directed DFS algorithm, we have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s.
REACHABILITY

• DFS tree rooted at v: vertices reachable from v via directed paths
STRONG CONNECTIVITY

• Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

• Pick a vertex \(v \) in \(G \)
• Perform a DFS from \(v \) in \(G \)
 • If there’s a \(w \) not visited, print “no”
• Let \(G' \) be \(G \) with edges reversed
• Perform a DFS from \(v \) in \(G' \)
 • If there’s a \(w \) not visited, print “no”
 • Else, print “yes”
• Running time: \(O(n + m) \)
STRONGLY CONNECTED COMPONENTS

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).

(a, c, g)
{f, d, e, b}
BREADTH-FIRST SEARCH
BREADTH-FIRST SEARCH

- **Breadth-first search (BFS)** is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
 - BFS on a graph with n vertices and m edges takes $O(n + m)$ time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
BFS ALGORITHM

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges.

Algorithm BFS(G)
Input: Graph G
Output: Labeling of the edges and partition of the vertices of G
1. for each v ∈ G.vertices() do
2. setLabel(v, UNEXPLORED)
3. for each e ∈ G.edges() do
4. setLabel(e, UNEXPLORED)
5. for each v ∈ G.vertices() do
6. if getLabel(v) = UNEXPLORED then
7. BFS(G,v)

Algorithm BFS(G,s)
Input: Graph G, a start vertex s
1. List L0 ← {s}
2. setLabel(s, VISITED)
3. i ← 0
4. while ¬L_i.isEmpty() do
5. List L_{i+1} ← ∅
6. for each v ∈ L_i do
7. for each e ∈ G.outgoingEdges(v) do
8. if getLabel(e) = UNEXPLORED then
9. w ← G.opposite(v,e)
10. if getLabel(w) = UNEXPLORED then
11. setLabel(e, DISCOVERY)
12. setLabel(w, VISITED)
13. L_{i+1} ← L_{i+1} ∪ {w}
14. else
15. setLabel(e, CROSS)
16. i ← i + 1
EXAMPLE

- **A**: visited vertex
- **A**: unexplored vertex
- **unexplored edge**: dashed line
- **discovery edge**: solid purple line
- **cross edge**: dotted purple line

Diagram: A tree structure with vertices labeled A, B, C, D, E, and F, and edges connecting them.
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
cross edge

A
B
C
D
E
F

L0
L1
L2
EXAMPLE

- **L_0**: Unexplored vertex
- **L_1**: Visited vertex
- **L_2**: Unexplored edge
- **L_3**: Discovery edge
- **L_4**: Cross edge

The diagram illustrates the exploration of a graph with labeled vertices and edges. The process moves from unexplored vertices (L_0) to visited vertices (L_1) through discovery edges (L_2), encountering unexplored edges (L_3) along the way, and identifying cross edges (L_4) in the progression.
EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited and note the level they are in
 • Label edges as discovery or cross edges
PROPERTIES

• Notation
 • G_s: connected component of s

• Property 1
 • BFS(G, s) visits all the vertices and edges of G_s

• Property 2
 • The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

• Property 3
 • For each vertex $v \in L_i$
 • The path of T_s from s to v has i edges
 • Every path from s to v in G_s has at least i edges
ANALYSIS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence L_i

• Method outgoingEdges() is called once for each vertex

• BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 • Compute the connected components of G
 • Compute a spanning forest of G
 • Find a simple cycle in G, or report that G is a forest
 • Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS VS. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Applications:
- DFS: Spanning forest, connected components, paths, cycles, Shortest paths, Biconnected components
- BFS: Spanning forest, connected components, paths, cycles, Shortest paths
DFS VS. BFS

Back edge \((v, w)\)

- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)

- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges
DAGS AND TOPOLOGICAL ORDERING

- A **directed acyclic graph (DAG)** is a digraph that has no directed cycles.
- A topological ordering of a digraph is a numbering:
 - $v_1, ..., v_n$
 - Of the vertices such that for every edge (v_i, v_j), we have $i < j$.
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints.
- Theorem - A digraph admits a topological ordering if and only if it is a DAG.
• Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)

A typical student day:
- wake up
- eat
- study computer sci.
- nap
- more c.s.
- play
- write c.s. program
- work out
- bake cookies
- sleep
- dream about graphs
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)
ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort(G)

Input: Directed Acyclic Graph (DAG) G

Output: Topological ordering of G

1. $H \leftarrow G$
2. $n \leftarrow G$.numVertices()
3. while H.isEmpty() do
4. Let v be a vertex with no outgoing edges
5. Label $v \leftarrow n$
6. $n \leftarrow n - 1$
7. H.removeVertex(v)
IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search
• $O(n + m)$ time.

Algorithm topologicalDFS(G)
Input: DAG G
Output: Topological ordering of G
1. $n \leftarrow G$.numVertices()
2. Initialize all vertices as UNEXPLORED
3. for each vertex $v \in G$.vertices() do
4. if getLabel(v) = UNEXPLORED then
5. topologicalDFS(G,v)

Algorithm topologicalDFS(G,v)
Input: DAG G, start vertex v
Output: Labeling of the vertices of G in the connected component of v
1. setLabel(v, VISITED)
2. for each $e \in G$.outgoingEdges(v) do
3. $w \leftarrow G$.opposite(v,e)
4. if getLabel(w) = UNEXPLORED then
5. // e is a discovery edge
6. topologicalDFS(G,w)
7. else
8. // e is a forward, cross, or back edge
9. Label v with topological number n
10. $n \leftarrow n - 1$
TOPOLOGICAL SORTING EXAMPLE
MINIMUM SPANNING TREES
MINIMUM SPANNING TREE

• Minimum spanning tree (MST)
 • Spanning tree of a weighted graph with minimum total edge weight

• Applications
 • Communications networks
 • Transportation networks
EXERCISE
MST

• Show an MST of the following graph.
Cycle Property

- **Cycle Property:**
 - Let T be a minimum spanning tree of a weighted graph G
 - Let e be an edge of G that is not in T and C let be the cycle formed by e with T
 - For every edge f of C, $\text{weight}(f) \leq \text{weight}(e)$

- **Proof by contradiction:**
 - If $\text{weight}(f) > \text{weight}(e)$ we can get a spanning tree of smaller weight by replacing e with f
PARTITION PROPERTY

- **Partition Property:**
 - Consider a partition of the vertices of G into subsets U and V
 - Let e be an edge of minimum weight across the partition
 - There is a minimum spanning tree of G containing edge e

- **Proof by contradiction:**
 - Let T be an MST of G
 - If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
 - By the cycle property, $\text{weight}(f) \leq \text{weight}(e)$
 - Thus, $\text{weight}(f) = \text{weight}(e)$
 - We obtain another MST by replacing f with e
PRIM-JARNIK’S ALGORITHM

• We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
• We store with each vertex v a label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
• At each step:
 • We add to the cloud the vertex u outside the cloud with the smallest distance label
 • We update the labels of the vertices adjacent to u
PRIM-JARNIK’S ALGORITHM

- An adaptable priority queue stores the vertices outside the cloud
 - Key: distance, $D[v]$
 - Element: vertex v
 - $Q.replace(i, k)$ changes the key of an item
- We store three labels with each vertex v:
 - Distance $D[v]$
 - Parent edge in MST $P[v]$
 - Locator in priority queue

Algorithm PrimJarnikMST(G)

Input: A weighted connected graph G

Output: A minimum spanning tree T of G

1. Pick any vertex s of G
2. $D[s] \leftarrow 0$; $P[s] \leftarrow \emptyset$
3. for each vertex $v \neq s$ do
4. $D[v] \leftarrow \infty$; $P[v] \leftarrow \emptyset$
5. $T \leftarrow \emptyset$
6. Priority queue Q of vertices with $D[v]$ as the key
7. while $\neg Q.isEmpty()$ do
8. $u \leftarrow Q.removeMin()$
9. Add vertex u and edge $P[u]$ to T
10. for each $e \in u.outgoingEdges$ do
11. $v \leftarrow G.\text{opposite}(u, e)$
12. if $e.weight() < D[v]$ then
13. $D[v] \leftarrow e.weight(); P[v] \leftarrow e$
14. $Q.replace(v, D[v])$
15. return T
EXAMPLE
EXERCISE
PRIM’S MST ALGORITHM

• Show how Prim’s MST algorithm works on the following graph, assuming you start with SFO
 • Show how the MST evolves in each iteration (a separate figure for each iteration).
ANALYSIS

• Graph operations
 • Method incidentEdges is called once for each vertex

• Label operations
 • We set/get the distance, parent and locator labels of vertex \(z \) \(O(\deg(z)) \) times
 • Setting/getting a label takes \(O(1) \) time

• Priority queue operations
 • Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(O(\log n) \) time
 • The key of a vertex \(w \) in the priority queue is modified at most \(\deg(w) \) times, where each key change takes \(O(\log n) \) time

• Prim-Jarnik’s algorithm runs in \(O((n + m) \log n) \) time provided the graph is represented by the adjacency list structure
 • Recall that \(\Sigma_v \deg(v) = 2m \)
 • If the graph is connected the running time is \(O(m \log n) \)