CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DEPTH-FIRST SEARCH
DEPTH-FIRST SEARCH

- **Depth-first search (DFS)** is a general technique for traversing a graph.
- A DFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.

- DFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices.
 - Find a cycle in the graph.

- Depth-first search is to graphs as what Euler tour is to binary trees.
DFS ALGORITHM FROM A VERTEX

Algorithm DFS\((G, u)\)

Input: A graph \(G\) and a vertex \(u\) of \(G\)

Output: A collection of vertices reachable from \(u\), with their discovery edges

1. Mark \(u\) as visited
2. for each edge \(e = (u, v) \in G.\text{outgoingEdges}(u)\) do
3. if \(v\) has not been visited then
4. Record \(e\) as a discovery edge for \(v\)
5. DFS\((G, v)\)
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

\[I(A) = \{B, C, D, E\} \]

\[I(B) = \{A, C, F\} \]
\[I(B) = \{A, C, F\} \]

\[I(C) = \{A, B, D, E\} \]

\[I(C) = \{A, B, D, E\} \]
\[I(C) = \{A, B, D, E\} \]
EXAMPLE

\[I(C) = \{A, B, D, E\} \]

\[I(D) = \{A, C\} \]

\[I(D) = \{A, C\} \]

\[I(E) = \{A, C\} \]

\[I(E) = \{A, C\} \]
\begin{align*}
I(C) &= \{A, B, D, E\} \\
I(B) &= \{A, C, F\} \\
I(G) &= \emptyset \\
I(F) &= \{B\} \\
I(B) &= \{A, C, F\} \\
I(A) &= \{A, B, C, D\}
\end{align*}
EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited
 • Label edges as discovery or back edges
The DFS algorithm is similar to a classic strategy for exploring a maze:
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
DFS ALGORITHM

• The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS(G)

Input: Graph G

Output: Labeling of the edges of G as discovery edges and back edges

1. for each \(v \in G.\text{vertices}() \) do
2. \(\text{setLabel}(v, \text{UNEXPLORED}) \)
3. for each \(e \in G.\text{edges}() \) do
4. \(\text{setLabel}(e, \text{UNEXPLORED}) \)
5. for each \(v \in G.\text{vertices}() \) do
6. if getLabel\((v) \) = \text{UNEXPLORED} then
7. \(\text{DFS}(G,v) \)

Algorithm DFS\((G,v) \)

Input: Graph \(G \) and a start vertex \(v \)

Output: Labeling of the edges of \(G \) in the connected component of \(v \) as discovery edges and back edges

1. \(\text{setLabel}(v, \text{VISITED}) \)
2. for each \(e \in G.\text{outgoingEdges}(v) \) do
3. if getLabel\((e) \) = \text{UNEXPLORED} then
4. \(w \leftarrow G.\text{opposite}(v,e) \)
5. if getLabel\((w) \) = \text{UNEXPLORED} then
6. \(\text{setLabel}(e, \text{DISCOVERY}) \)
7. \(\text{DFS}(G,w) \)
8. else
9. \(\text{setLabel}(e, \text{BACK}) \)
PROPERTIES OF DFS

• Property 1
 • DFS\((G, \nu)\) visits all the vertices and edges in the connected component of \(\nu\)

• Property 2
 • The discovery edges labeled by DFS\((G, \nu)\) form a spanning tree of the connected component of \(\nu\)
ANALYSIS OF DFS

- Setting/getting a vertex/edge label takes \(O(1) \) time
- Each vertex is labeled twice
 - once as \textit{UNEXPLORED}
 - once as \textit{VISITED}
- Each edge is labeled twice
 - once as \textit{UNEXPLORED}
 - once as \textit{DISCOVERY} or \textit{BACK}
- Function \(\text{DFS}(G, v) \) and the method \text{outgoingEdges()} \) are called once for each vertex
- DFS runs in \(O(n + m) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\sum_v \deg(v) = 2m \)
APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path between two given vertices \(u \) and \(z \) using the template method pattern

• We call \(\text{DFS}(G, u) \) with \(u \) as the start vertex

• We use a stack \(S \) to keep track of the path between the start vertex and the current vertex

• As soon as destination vertex \(z \) is encountered, we return the path as the contents of the stack

Algorithm \(\text{pathDFS}(G, v, z) \)

Input: Graph \(G \), a start vertex \(v \), a goal vertex \(z \)
Output: Path between \(v \) and \(z \)

1. setLabel\((v, \text{VISITED}) \)
2. \(S\).push\((v) \)
3. if \(v = z \) then
4. return \(S\).elements()
5. for each \(e \in G\).outgoingEdges\((v) \) do
6. if getLabel\((e) = \text{UNEXPLORED} \) then
7. \(w \leftarrow G\).opposite\((v, e) \)
8. if getLabel\((w) = \text{UNEXPLORED} \) then
9. setLabel\((e, \text{DISCOVERY}) \)
10. \(S\).push\((e) \)
11. \(\text{pathDFS}(G, w) \)
12. \(S\).pop()
13. else
14. setLabel\((e, \text{BACK}) \)
15. \(S\).pop()
APPLICATION
CYCLE FINDING

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

Algorithm cycleDFS(G, v)

Input: Graph G, a start vertex v

Output: Cycle containing v

1. setLabel(v, $VISITED$)
2. S.push(v)
3. for each $e \in G$.outgoingEdges(v) do
4. if getLabel(e) = $UNEXPLORED$ then
5. $w \leftarrow G$.opposite(v, e)
6. S.push(e)
7. if getLabel(w) = $UNEXPLORED$ then
8. setLabel(e, $DISCOVERY$)
9. cycleDFS(G, w)
10. S.pop()
11. else
12. Stack T ← \emptyset
13. repeat
14. T.push(S.pop())
15. until T.top() = w
16. return T.elements()
17. S.pop()
DIRECTED DFS

• We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.

• In the directed DFS algorithm, we have four types of edges:
 • discovery edges
 • back edges
 • forward edges
 • cross edges

• A directed DFS starting at a vertex \(s \) determines the vertices reachable from \(s \).
REACHABILITY

• DFS tree rooted at v: vertices reachable from v via directed paths
STRONG CONNECTIVITY

• Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

• Pick a vertex \(v \) in \(G \)
• Perform a DFS from \(v \) in \(G \)
 • If there’s a \(w \) not visited, print “no”
• Let \(G’ \) be \(G \) with edges reversed
• Perform a DFS from \(v \) in \(G’ \)
 • If there’s a \(w \) not visited, print “no”
 • Else, print “yes”
• Running time: \(O(n + m) \)
STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the subgraph

• Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).

\begin{itemize}
 \item \{a, c, g\}
 \item \{f, d, e, b\}
\end{itemize}
BREADTH-FIRST SEARCH
BREADTH-FIRST SEARCH

- **Breadth-first search (BFS)** is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $O(n + m)$ time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
BFS ALGORITHM

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges.

Algorithm BFS(G)
Input: Graph G
Output: Labeling of the edges and partition of the vertices of G
1. for each v ∈ G.vertices() do
2. setLabel(v, UNEXPLRED)
3. for each e ∈ G.edges() do
4. setLabel(e, UNEXPLRED)
5. for each v ∈ G.vertices() do
6. if getLabel(v) = UNEXPLRED then
7. BFS(G,v)

Algorithm BFS(G,s)
Input: Graph G, a start vertex s
1. List L0 ← {s}
2. setLabel(s, VISITED)
3. i ← 0
4. while ¬L_i.isEmpty() do
5. List L_{i+1} ← Ø
6. for each v ∈ L_i do
7. for each e ∈ G.outgoingEdges(v) do
8. if getLabel(e) = UNEXPLRED then
9. w ← G.opposite(v, e)
10. if getLabel(w) = UNEXPLRED then
11. setLabel(e, DISCOVERY)
12. setLabel(w, VISITED)
13. L_{i+1} ← L_{i+1} ∪ {w}
14. else
15. setLabel(e, CROSS)
16. i ← i + 1
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
cross edge
EXAMPLE

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**
EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex F
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited and note the level they are in
 • Label edges as discovery or cross edges
PROPERTIES

• Notation
 • \(G_s \): connected component of \(s \)

• Property 1
 • \(\text{BFS}(G, s) \) visits all the vertices and edges of \(G_s \)

• Property 2
 • The discovery edges labeled by \(\text{BFS}(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

• Property 3
 • For each vertex \(v \in L_i \)
 • The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
 • Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
ANALYSIS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence L_i

• Method outgoingEdges() is called once for each vertex

• BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 • Compute the connected components of G
 • Compute a spanning forest of G
 • Find a simple cycle in G, or report that G is a forest
 • Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS VS. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles | √ | √
Shortest paths | | √
Biconnected components | √ |
DFS VS. BFS

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges
DAGS AND TOPOLOGICAL ORDERING

- A directed acyclic graph (DAG) is a digraph that has no directed cycles.
- A topological ordering of a digraph is a numbering:
 - v_1, \ldots, v_n
 - Of the vertices such that for every edge (v_i, v_j), we have $i < j$.
- Example: in a task scheduling digraph, a topological ordering is a task sequence that satisfies the precedence constraints.
- Theorem - A digraph admits a topological ordering if and only if it is a DAG.
APPLICATION

- Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started
EXERCISE
TOPOLOGICAL SORTING

- Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)

A typical student day

- wake up
- study computer sci.
- eat
- nap
- more c.s.
- play
- write c.s. program
- bake cookies
- sleep
- work out
- dream about graphs
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that (u, v) in E implies $u < v$
ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort\((G)\)

Input: Directed Acyclic Graph (DAG) \(G\)

Output: Topological ordering of \(G\)

1. \(H \leftarrow G\)
2. \(n \leftarrow G\).numVertices()
3. while \(\neg H\).isEmpty() do
4. Let \(v\) be a vertex with no outgoing edges
5. Label \(v \leftarrow n\)
6. \(n \leftarrow n - 1\)
7. \(H\).removeVertex\((v)\)
IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search
• $O(n + m)$ time.

Algorithm topologicalDFS(G)
Input: DAG G
Output: Topological ordering of G

1. $n \leftarrow G$.numVertices()
2. Initialize all vertices as $UNEXPLOR ED$
3. for each vertex $v \in G$.vertices() do
4. if getLabel(v) = $UNEXPLOR ED$ then
5. topologicalDFS(G, v)

Algorithm topologicalDFS(G, v)
Input: DAG G, start vertex v
Output: Labeling of the vertices of G in the connected component of v

1. setLabel(v, $VISITED$)
2. for each $e \in G$.outgoingEdges(v) do
3. $w \leftarrow G$.opposite(v, e)
4. if getLabel(w) = $UNEXPLOR ED$ then
5. // e is a discovery edge
6. topologicalDFS(G, w)
7. else
8. // e is a forward, cross, or back edge
9. Label v with topological number n
10. $n \leftarrow n - 1$
TOPOLOGICAL SORTING EXAMPLE

The diagram represents a topological sort example. The numbers in the circles correspond to the nodes in the graph.
MINIMUM SPANNING TREES
MINIMUM SPANNING TREE

- Minimum spanning tree (MST)
 - Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks
EXERCISE
MST

• Show an MST of the following graph.
CYCLE PROPERTY

- **Cycle Property:**
 - Let T be a minimum spanning tree of a weighted graph G
 - Let e be an edge of G that is not in T and C let be the cycle formed by e with T
 - For every edge f of C, $\text{weight}(f) \leq \text{weight}(e)$

- **Proof by contradiction:**
 - If $\text{weight}(f) > \text{weight}(e)$ we can get a spanning tree of smaller weight by replacing e with f
PARTITION PROPERTY

• **Partition Property:**
 • Consider a partition of the vertices of G into subsets U and V
 • Let e be an edge of minimum weight across the partition
 • There is a minimum spanning tree of G containing edge e

• **Proof by contradiction:**
 • Let T be an MST of G
 • If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
 • By the cycle property, $\text{weight}(f) \leq \text{weight}(e)$
 • Thus, $\text{weight}(f) = \text{weight}(e)$
 • We obtain another MST by replacing f with e

Replacing f with e yields another MST.
PRIM-JARNIK’S ALGORITHM

- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v a label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to u
PRIM-JARNIK’S ALGORITHM

- An adaptable priority queue stores the vertices outside the cloud
 - Key: distance, \(D[v]\)
 - Element: vertex \(v\)
 - \(Q\).replace\((i, k)\) changes the key of an item

- We store three labels with each vertex \(v\):
 - Distance \(D[v]\)
 - Parent edge in MST \(P[v]\)
 - Locator in priority queue

Algorithm PrimJarnikMST\((G)\)

Input: A weighted connected graph \(G\)

Output: A minimum spanning tree \(T\) of \(G\)

1. Pick any vertex \(s\) of \(G\)
2. \(D[s] \leftarrow 0\); \(P[s] \leftarrow \emptyset\)
3. **for each** vertex \(v \neq s\) **do**
 4. \(D[v] \leftarrow \infty\); \(P[v] \leftarrow \emptyset\)
 5. \(T \leftarrow \emptyset\)
 6. Priority queue \(Q\) of vertices with \(D[v]\) as the key
5. **while** \(\neg Q\.isEmpty()\) **do**
 6. \(u \leftarrow Q\.removeMin()\)
 7. Add vertex \(u\) and edge \(P[u]\) to \(T\)
 8. **for each** \(e \in u\.outgoingEdges()\) **do**
 9. \(v \leftarrow G\.opposite(u,e)\)
 10. **if** \(e\.weight() < D[v]\) **then**
 11. \(D[v] \leftarrow e\.weight(); P[v] \leftarrow e\)
 12. \(Q\.replace(v,D[v])\)
5. **return** \(T\)
EXAMPLE
EXERCISE
PRIM’S MST ALGORITHM

• Show how Prim’s MST algorithm works on the following graph, assuming you start with SFO
 • Show how the MST evolves in each iteration.
ANALYSIS

• Graph operations
 • Method incidentEdges is called once for each vertex

• Label operations
 • We set/get the distance, parent and locator labels of vertex \(z \) \(O(\deg(z)) \) times
 • Setting/getting a label takes \(O(1) \) time

• Priority queue operations
 • Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(O(\log n) \) time
 • The key of a vertex \(w \) in the priority queue is modified at most \(\deg(w) \) times, where each key change takes \(O(\log n) \) time

• Prim-Jarnik’s algorithm runs in \(O((n + m) \log n) \) time provided the graph is represented by the adjacency list structure
 • Recall that \(\Sigma_v \deg(v) = 2m \)
 • If the graph is connected the running time is \(O(m \log n) \)