CHAPTER 12
SORTING AND SELECTION

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DIVIDE AND CONQUER ALGORITHMS
• **Divide-and-conquer** is a general algorithm design paradigm:
 • *Divide*: divide the input data S into k (disjoint) subsets $S_1, S_2, ..., S_k$
 • *Recur*: solve the subproblems recursively
 • *Conquer*: combine the solutions for $S_1, S_2, ..., S_k$ into a solution for S

• The base case for the recursion are subproblems of constant size

• Analysis can be done using *recurrence equations* (relations)
DIVIDE AND CONQUER ALGORITHMS
ANALYSIS WITH RECURRENCE EQUATIONS

• When the size of all subproblems is the same (frequently the case) the recurrence equation representing the algorithm is:
 \[T(n) = D(n) + kT\left(\frac{n}{c}\right) + C(n) \]

• Where
 • \(D(n) \) is the cost of dividing \(S \) into the \(k \) subproblems \(S_1, S_2, \ldots, S_k \)
 • There are \(k \) subproblems, each of size \(\frac{n}{c} \) that will be solved recursively
 • \(C(n) \) is the cost of combining the subproblem solutions to get the solution for \(S \)
EXERCISE
RECURRENCE EQUATION SETUP

• Algorithm — transform multiplication of two \(n \)-bit integers \(I \) and \(J \) into multiplication of \(\left(\frac{n}{2} \right) \)-bit integers and some additions/shifts

1. Where does recursion happen in this algorithm?

2. Rewrite the step(s) of the algorithm to show this clearly.

Algorithm multiply(\(I, J \))

Input: \(n \)-bit integers \(I, J \)

Output: \(I \ast J \)

1. if \(n > 1 \) then
2. Split \(I \) and \(J \) into high and low order halves:
 \(I_h, I_l, J_h, J_l \)
3. \(x_1 \leftarrow I_h \ast J_h \); \(x_2 \leftarrow I_h \ast J_l \)
4. \(x_3 \leftarrow I_l \ast J_h \); \(x_4 \leftarrow I_l \ast J_l \)
5. \(Z \leftarrow x_1 \ast 2^n + x_2 \ast 2^{n/2} + x_3 \ast 2^{n/2} + x_4 \)
6. else
7. \(Z \leftarrow I \ast J \)
8. return \(Z \)
EXERCISE
RECURRENCE EQUATION SETUP

• Algorithm – transform multiplication of two n-bit integers I and J into multiplication of $(\frac{n}{2})$-bit integers and some additions/shifts

3. Assuming that additions and shifts of n-bit numbers can be done in $O(n)$ time, describe a recurrence equation showing the running time of this multiplication algorithm

Algorithm multiply(I,J)
Input: n-bit integers I,J
Output: $I \times J$
1. if $n > 1$ then
2. Split I and J into high and low order halves: I_h, I_l, J_h, J_l
3. $x_1 \leftarrow$ multiply(I_h, J_h); $x_2 \leftarrow$ multiply(I_h, J_l)
4. $x_3 \leftarrow$ multiply(I_l, J_h); $x_4 \leftarrow$ multiply(I_l, J_l)
5. $Z \leftarrow x_1 \times 2^n + x_2 \times 2^{\frac{n}{2}} + x_3 \times 2^{\frac{n}{2}} + x_4$
6. else
7. $Z \leftarrow I \times J$
8. return Z
Algorithm – transform multiplication of two n-bit integers I and J into multiplication of $\left(\frac{n}{2}\right)$-bit integers and some additions/shifts

The recurrence equation for this algorithm is:

- $T(n) = 4T\left(\frac{n}{2}\right) + O(n)$

The solution is $O(n^2)$ which is the same as naïve algorithm

Algorithm multiply(I,J)

Input: n-bit integers I,J

Output: $I \ast J$

1. if $n > 1$ then
2. Split I and J into high and low order halves:
 I_h, I_l, J_h, J_l
3. $x_1 \leftarrow$ multiply(I_h, J_h); $x_2 \leftarrow$ multiply(I_h, J_l)
4. $x_3 \leftarrow$ multiply(I_l, J_h); $x_4 \leftarrow$ multiply(I_l, J_l)
5. $Z \leftarrow x_1 \ast 2^n + x_2 \ast 2^{\frac{n}{2}} + x_3 \ast 2^{\frac{n}{2}} + x_4$
6. else
7. $Z \leftarrow I \ast J$
8. return Z
• Remaining question: how do we solve recurrence relations?
 • Iterative substitution — continually expand a recurrence to yield a summation, then bound the summation
 • Analyze the recursion tree — determine work per level and number of levels in a recursion tree. This is not a proof technique, more of an intuitive sketch of a proof
 • Master theorem (method) — rule to go directly to solution of recurrence. This is slightly beyond scope of course, but we will see it anyway
ITERATIVE SUBSTITUTION

• In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern. Example:

 • \(T(n) = 2T\left(\frac{n}{2}\right) + bn \)
 • \[= 2\left(2T\left(\frac{n}{2}\right) + b\left(\frac{n}{2}\right)\right) + bn = 2^2T\left(\frac{n}{2^2}\right) + 2bn \]
 • \[= 2^3T\left(\frac{n}{2^3}\right) + 3bn \]
 • \[= \cdots \]
 • \[= 2^iT\left(\frac{n}{2^i}\right) + ibn \]

 • Note that base, \(T(n) = b, \) case occurs when \(2^i = n. \) That is, \(i = \log n. \)

 • So,

\[
T(n) = bn + n \log n = O(n \log n)
\]
THE RECURSION TREE

• Draw the recursion tree for the recurrence relation and look for a pattern.

Example: \(T(n) = 2T\left(\frac{n}{2}\right) + bn \)

- **depth**
- **T’s size**
- **time**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(bn)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{n}{2})</td>
<td>(bn)</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(\frac{n}{2^i})</td>
<td>(bn)</td>
</tr>
</tbody>
</table>

• Total time: \(bn + bn \log n = O(n \log n) \)
THE MASTER THEOREM (METHOD)

• Many divide-and-conquer algorithms have the form:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

• The master theorem:
 1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af\left(\frac{n}{b}\right) \leq \delta f(n) \) for some \(\delta < 1 \)

• Examples
 • \(T(n) = 4T\left(\frac{n}{2}\right) + n \)
 • \(O(n^2) \)
 • \(T(n) = T\left(\frac{n}{2}\right) + 1 \)
 • \(O(\log n) \), (binary search)
 • \(T(n) = T\left(\frac{n}{3}\right) + n \log n \)
 • \(O(n \log n) \)
MERGE SORT

7 2 \rightarrow 2 4

7 \rightarrow 7
2 \rightarrow 2

9 \rightarrow 9
4 \rightarrow 4

9 4 \rightarrow 4 9
MERGE-SORT

• **Merge-sort** is based on the divide-and-conquer paradigm. It consists of three steps:

 • **Divide:** partition input sequence S into two sequences S_1 and S_2 of about $\frac{n}{2}$ elements each

 • **Recur:** recursively sort S_1 and S_2

 • **Conquer:** merge S_1 and S_2 into a sorted sequence

• What is the recurrence relation?

Algorithm mergeSort(S, C)

Input: Sequence S of n elements, Comparator C

Output: Sequence S sorted according to C

1. if S.size() > 1 then
2. $(S_1, S_2) \leftarrow$ partition\((S, \frac{n}{2}) \)
3. $S_1 \leftarrow$ mergeSort(S_1, C)
4. $S_2 \leftarrow$ mergeSort(S_2, C)
5. $S \leftarrow$ merge\((S_1, S_2) \)
6. return S
The running time of Merge Sort can be expressed by the recurrence equation:

\[T(n) = 2T\left(\frac{n}{2}\right) + M(n) \]

We need to determine \(M(n) \), the time to merge two sorted sequences each of size \(\frac{n}{2} \).

Algorithm mergeSort(S, C)

Input: Sequence \(S \) of \(n \) elements, Comparator \(C \)

Output: Sequence \(S \) sorted according to \(C \)

1. if \(S \).size() > 1 then
2. \((S_1,S_2) \leftarrow \text{partition}(S, \frac{n}{2})\)
3. \(S_1 \leftarrow \text{mergeSort}(S_1, C)\)
4. \(S_2 \leftarrow \text{mergeSort}(S_2, C)\)
5. \(S \leftarrow \text{merge}(S_1, S_2)\)
6. return \(S \)
MERGING TWO SORTED SEQUENCES

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with $\frac{n}{2}$ elements and implemented by means of a doubly linked list, takes $O(n)$ time
 - $M(n) = O(n)$

Algorithm merge(A,B)

Input: Sequences A,B with $\frac{n}{2}$ elements each

Output: Sorted sequence of $A \cup B$

1. $S \leftarrow \emptyset$
2. while $\neg A$.isEmpty() $\land \neg B$.isEmpty() do
3. if A.first() $<$ B.first() then
4. S.addLast(A.removeFirst())
5. else
6. S.addLast(B.removeFirst())
7. while $\neg A$.isEmpty() do
8. S.addLast(A.removeFirst())
9. while $\neg B$.isEmpty() do
10. S.addLast(B.removeFirst())
11. return S
So, the running time of Merge Sort can be expressed by the recurrence equation:

\[T(n) = 2T\left(\frac{n}{2}\right) + M(n) \]

\[= 2T\left(\frac{n}{2}\right) + O(n) \]

\[= O(n \log n) \]

Algorithm mergeSort(S,C)

Input: Sequence S of n elements, Comparator C

Output: Sequence S sorted according to C

1. if S.size() > 1 then
2. \((S_1,S_2) \leftarrow \text{partition}(S,\frac{n}{2})\)
3. \(S_1 \leftarrow \text{mergeSort}(S_1,C)\)
4. \(S_2 \leftarrow \text{mergeSort}(S_2,C)\)
5. \(S \leftarrow \text{merge}(S_1,S_2)\)
6. return S
MERGE-SORT EXECUTION TREE (RECURSIVE CALLS)

• An execution of merge-sort is depicted by a binary tree
 • Each node represents a recursive call of merge-sort and stores
 • Unsorted sequence before the execution and its partition
 • Sorted sequence at the end of the execution
 • The root is the initial call
 • The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

• Partition

7 2 9 4 3 8 6 1
EXECUTION EXAMPLE

• Recursive Call, partition
EXECUTION EXAMPLE

• Recursive Call, partition
EXECUTION EXAMPLE

• Recursive Call, base case
EXECUTION EXAMPLE

• Recursive Call, base case
EXECUTION EXAMPLE

- **Merge**

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
7 2 -> 2 7
```

```
7 -> 7  2 -> 2
```

```
1 3 8 6 1
```

```
1 3 8 6 1
```

```
1 6
```

```
1 6
```

```
2 9
```

```
2 9
```

```
4 9
```

```
4 9
```

```
3 8
```

```
3 8
```

```
3 8
```

```
6 1
```

```
6 1
```

```
8 6
```

```
8 6
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```
EXECUTION EXAMPLE

- Recursive call, ..., base case, merge
EXECUTION EXAMPLE

- Merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 → 2 4 7 9
```

```
7 2 9 4 → 2 7
```

```
7 2 9 4 → 7
```

```
9 4 → 4 9
```

```
9 4 → 9
```

```
4 4
```

```
1 6
```

```
3 8 6 1
```

```
2 4 7 9
```

```
2 7
```
EXECUTION EXAMPLE

• Recursive call, ..., merge, merge
EXECUTION EXAMPLE

- Merge

```
7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9
7 2 | 9 4 → 2 4 7 9
7 | 2 → 2 7
9 | 4 → 4 9
3 | 8 → 3 8
6 | 1 → 1 6
7 → 7
2 → 2
9 → 9
4 → 4
3 → 3
8 → 8
6 → 6
1 → 1
```
ANOTHER ANALYSIS OF MERGE-SORT

• The height h of the merge-sort tree is $O(\log n)$
 • at each recursive call we divide in half the sequence,

• The work done at each level is $O(n)$
 • At level i, we partition and merge 2^i sequences of size $\frac{n}{2^i}$

• Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
<th>Cost for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$\frac{n}{2}$</td>
<td>n</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$\frac{n}{2^i}$</td>
<td>n</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$2^{\log n} = n$</td>
<td>$\frac{n}{2^{\log n}} = 1$</td>
<td>n</td>
</tr>
</tbody>
</table>
SUMMARY OF SORTING ALGORITHMS (SO FAR)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For small data sets (< 1K)</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>Slow, in-place</td>
</tr>
<tr>
<td></td>
<td>WC, AC</td>
<td>For small data sets (< 1K)</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td></td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For large data sets (1K – 1M)</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Fast, sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For huge data sets (>1M)</td>
</tr>
</tbody>
</table>
QUICK-SORT
Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

• Divide: pick a random element \(x \) (called pivot) and partition \(S \) into
 • \(L \) - elements less than \(x \)
 • \(E \) - elements equal \(x \)
 • \(G \) - elements greater than \(x \)

• Recur: sort \(L \) and \(G \)

• Conquer: join \(L \), \(E \), and \(G \)
ANALYSIS OF QUICK SORT USING RECURRENCE RELATIONS

- Assumption: random pivot expected to give equal sized sublists
- The running time of Quick Sort can be expressed as:
 \[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]
- \(P(n) \) - time to partition on input of size \(n \)

Algorithm quickSort(S)

Input: Sequence \(S \)

Output: Sequence \(S \) with the elements sorted

1. if \(S\).size() \(\leq\) 1 then
2. return \(S \)
3. \(i \leftarrow \text{rand()} \%(r - l) + l \) //random integer
4. //between \(l \) and \(r \)
5. \(x \leftarrow S\text{.at}(i) \)
6. \((L, E, G) \leftarrow \text{partition}(x)\)
7. quickSort(L)
8. quickSort(G)
9. return splice(L, E, G)
PARTITION

• We partition an input sequence as follows:
 • We remove, in turn, each element y from S and
 • We insert y into L, E, or G, depending on the result of the comparison with the pivot x
• Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time
• Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm partition(S, p)
Input: Sequence S, position p of the pivot
Output: Subsequences L, E, G of the elements of S
less than, equal to, or greater than the pivot, respectively

1. $L, E, G \leftarrow \emptyset$
2. $x \leftarrow S.remove(p)$
3. while ¬S.isEmpty() do
4. $y \leftarrow S.removeFirst()$
5. if $y < x$ then
6. $L.addLast(y)$
7. else if $y = x$ then
8. $E.addLast(y)$
9. else // $y > x$
10. $G.addLast(y)$
11. return L, E, G
SO, THE EXPECTED COMPLEXITY OF QUICK SORT

• Assumption: random pivot expected to give equal sized sublists
• The running time of Quick Sort can be expressed as:

\[T(n) = 2T\left(\frac{n}{2}\right) + P(n) \]

\[= 2T\left(\frac{n}{2}\right) + O(n) \]

\[= O(n \log n) \]

Algorithm quickSort(S)

Input: Sequence S

Output: Sequence S with the elements sorted

1. if S.size() \leq 1 then
2. return S
3. i \leftarrow \text{rand()}\% (r - l) + l \quad \text{//random integer}
4. \quad \text{//between} \ l \text{ and } r
5. x \leftarrow S.at(i)
6. (L, E, G) \leftarrow \text{partition}(x)
7. quickSort(L)
8. quickSort(G)
9. return splice(L, E, G)
QUICK-SORT TREE

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1
EXECUTION EXAMPLE

- Pivot selection

7 2 9 4 3 7 6 1

Diagram of the pivot selection process.
EXECUTION EXAMPLE

- Partition, recursive call, pivot selection
EXECUTION EXAMPLE

- Partition, recursive call, base case
EXECUTION EXAMPLE

• Recursive call, ..., base case, join
EXECUTION EXAMPLE

• Recursive call, pivot selection
EXECUTION EXAMPLE

- Partition, ..., recursive call, base case
EXECUTION EXAMPLE

• Join, join

```
2 4 3 1 → 1 2 3 4
7 9 7 → 7 7 9
```
WORST-CASE RUNNING TIME

• The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
 • One of L and G has size $n - 1$ and the other has size 0
• The running time is proportional to:
 \[n + (n - 1) + \cdots + 2 + 1 = O(n^2) \]
• Alternatively, using recurrence equations:
 \[T(n) = T(n - 1) + O(n) = O(n^2) \]
EXPECTED RUNNING TIME
REMOVING EQUAL SPLIT ASSUMPTION

• Consider a recursive call of quick-sort on a sequence of size s
 • Good call: the sizes of L and G are each less than $\frac{3s}{4}$
 • Bad call: one of L and G has size greater than $\frac{3s}{4}$

• A call is good with probability $1/2$
 • $1/2$ of the possible pivots cause good calls:
EXPECTED RUNNING TIME

- **Probabilistic Fact:** The expected number of coin tosses required in order to get k heads is $2k$ (e.g., it is expected to take 2 tosses to get heads)

- For a node of depth i, we expect
 - $\frac{i}{2}$ ancestors are good calls
 - The size of the input sequence for the current call is at most $\left(\frac{3}{4}\right)^i n$

- Therefore, we have
 - For a node of depth $2 \log_3 n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$

- The amount or work done at the nodes of the same depth is $O(n)$

- Thus, the expected running time of quick-sort is $O(n \log n)$

![Tree Diagram](image_url)
IN-PLACE QUICK-SORT

• Quick-sort can be implemented to run in-place
• In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 • the elements less than the pivot have indices less than h
 • the elements equal to the pivot have indices between h and k
 • the elements greater than the pivot have indices greater than k
• The recursive calls consider
 • elements with indices less than h
 • elements with indices greater than k

Algorithm inPlaceQuickSort(S, l, r)
Input: Array S, indices l, r
Output: Array S with the elements between l and r sorted
1. if $l \geq r$ then
2. return S
3. $i \leftarrow \text{rand}() \% (r - l) + l$ //random integer
4. //between l and r
5. $x \leftarrow S[i]$
6. $(h, k) \leftarrow \text{inPlacePartition}(x)$
7. inPlaceQuickSort($S, l, h - 1$)
8. inPlaceQuickSort($S, k + 1, r$)
9. return S
IN-PLACE PARTITIONING

• Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

• Repeat until j and k cross:
 • Scan j to the right until finding an element $\geq x$.
 • Scan k to the left until finding an element $< x$.
 • Swap elements at indices j and k
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ BC</td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, For large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$ AC, BC</td>
<td>Randomized, in-place</td>
</tr>
<tr>
<td></td>
<td>$O(n^2)$ WC</td>
<td>Fastest, for large data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, for huge data sets</td>
</tr>
</tbody>
</table>
SORTING LOWER BOUND
COMPARISON-BASED SORTING

• Many sorting algorithms are comparison based.
 • They sort by making comparisons between pairs of objects
 • Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

• Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, $x_1, x_2, ..., x_n$.
COUNTING COMPARISONS

• Let us just count comparisons then.

• Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

$x_i < x_j$

$x_a < x_b$?

$x_c < x_d$?

$x_e < x_f$?

$x_k < x_l$?

$x_m < x_o$?

$x_p < x_q$?

...
DECISION TREE HEIGHT

• The height of the decision tree is a lower bound on the running time.
• Every input permutation must lead to a separate leaf output.
• If not, some input ...4...5... would have the same output ordering as ...5...4..., which would be wrong.
• Since there are \(n! = 1 \times 2 \times ... \times n \) leaves, the height is at least \(\log(n!) \).
THE LOWER BOUND

• Any comparison-based sorting algorithm takes at least \(\log(n!) \) time

\[
\log(n!) \geq \log \left(\frac{n}{2} \right)^{\frac{n}{2}} = \frac{n}{2} \log \frac{n}{2}
\]

• That is, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time.
BUCKET-SORT AND RADIX-SORT

CAN WE SORT IN LINEAR TIME?
Let be S be a sequence of n (key, element) items with keys in the range $[0, N - 1]$

Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
- Phase 1: Empty sequence S by moving each entry into its bucket $B[k]$
- Phase 2: for $i \leftarrow 0 \ldots N - 1$, move the items of bucket $B[i]$ to the end of sequence S

Analysis:
- Phase 1 takes $O(n)$ time
- Phase 2 takes $O(n + N)$ time

Bucket-sort takes $O(n + N)$ time

Algorithm bucketSort(S, N)

Input: Sequence S of entries with integer keys in the range $[0, N - 1]$

Output: Sequence S sorted in nondecreasing order of the keys

1. $B \leftarrow$ array of N empty sequences
2. for each entry $e \in S$ do
3. $k \leftarrow e\.key()$
4. remove e from S
5. insert e at the end of bucket $B[k]$
6. for $i \leftarrow 0 \text{ to } N - 1$ do
7. for each entry $e \in B[i]$ do
8. remove e from bucket $B[i]$
9. insert e at the end of S
EXAMPLE

• Key range [37, 46] – map to buckets [0,9]

Phase 1

Phase 2
PROPERTIES AND EXTENSIONS

• Properties
 • Key-type
 • The keys are used as indices into an array and cannot be arbitrary objects
 • No external comparator
 • Stable sorting
 • The relative order of any two items with the same key is preserved after the execution of the algorithm

• Extensions
 • Integer keys in the range \([a, b]\)
 • Put entry \(e\) into bucket \(B[k - a]\)
 • String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 • Sort \(D\) and compute the index \(i(k)\) of each string \(k\) of \(D\) in the sorted sequence
 • Put item \(e\) into bucket \(B[i(k)]\)
LEXICOGRAPHIC ORDER

• Given a list of tuples:
 \[(7,4,6) (5,1,5) (2,4,6) (2,1,4) (5,1,6) (3,2,4)\]

• After sorting, the list is in lexicographical order:
 \[(2,1,4) (2,4,6) (3,2,4) (5,1,5) (5,1,6) (7,4,6)\]
LEXICOGRAPHIC ORDER FORMALIZED

• A d-tuple is a sequence of d keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the i-th dimension of the tuple
 • Example - the Cartesian coordinates of a point in space is a 3-tuple (x, y, z)

• The lexicographic order of two d-tuples is recursively defined as follows

• $(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d) \iff$
 $$x_1 < y_1 \lor (x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d))$$

• i.e., the tuples are compared by the first dimension, then by the second dimension, etc.
EXERCISE
LEXICOGRAPHIC ORDER

• Given a list of 2-tuples, we can order the tuples lexicographically by applying a stable sorting algorithm two times:
 (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

• Possible ways of doing it:
 • Sort first by 1st element of tuple and then by 2nd element of tuple
 • Sort first by 2nd element of tuple and then by 1st element of tuple

• Show the result of sorting the list using both options
EXERCISE

LEXICOGRAPHIC ORDER

• (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

• Using a stable sort,
 • Sort first by 1st element of tuple and then by 2nd element of tuple
 • Sort first by 2nd element of tuple and then by 1st element of tuple

• Option 1:
 • 1st sort: (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)
 • 2nd sort: (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7) - WRONG

• Option 2:
 • 1st sort: (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)
 • 2nd sort: (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3) - CORRECT
LEXICOGRAPHIC-SORT

• Let C_i be the comparator that compares two tuples by their i-th dimension
• Let $\text{stableSort}(S, C)$ be a stable sorting algorithm that uses comparator C
• Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension
• Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of stableSort

\textbf{Algorithm} lexicographicSort(S)
\textbf{Input:} Sequence S of d-tuples
\textbf{Output:} Sequence S sorted in lexicographic order
1. for $i \leftarrow d$ to 1 do
2. $\text{stableSort}(S, C_i)$
RADIX-SORT

• Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension

• Radix-sort is applicable to tuples where the keys in each dimension \(i \) are integers in the range \([0, N - 1]\)

• Radix-sort runs in time \(O(d(n + N)) \)

Algorithm \text{radixSort}(S, N)

Input: Sequence \(S \) of \(d \)-tuples such that \((0, \ldots, 0) \leq (x_1, \ldots, x_d) \) and \((x_1, \ldots, x_d) \leq (N - 1, \ldots, N - 1) \) for each tuple \((x_1, \ldots, x_d) \) in \(S \)

Output: Sequence \(S \) sorted in lexicographic order

1. \textbf{for} \(i \leftarrow d \) \textbf{to} 1 \textbf{do}
2. \hspace{1em} set the key \(k \) of each entry \((k, (x_1, \ldots, x_d)) \) of \(S \) to \(i \)th dimension \(x_i \)
3. \hspace{1em} \text{bucketSort}(S, N)
EXAMPLE
RADIX-SORT FOR BINARY NUMBERS

• Sorting a sequence of 4-bit integers

 • \(d = 4, N = 2 \) so \(O(d(n + N)) = O(4(n + 2)) = O(n) \)

Sort by \(d = 4 \)
Sort by \(d = 3 \)
Sort by \(d = 2 \)
Sort by \(d = 1 \)
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$ WC, AC $O(n)$ BC</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow, for small data sets</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log n)$</td>
<td>In-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, for large data sets</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>Exp. $O(n \log n)$ AC, BC $O(n^2)$ WC</td>
<td>Randomized, in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fastest, for in-place data sets</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log n)$</td>
<td>Sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast, for huge data sets</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>$O(d(n + N))$, d #digits, N range of digit values</td>
<td>Stable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fastest, only for integers</td>
</tr>
</tbody>
</table>
SELECTION
THE SELECTION PROBLEM

• Given an integer k and n elements $\{x_1, x_2, \ldots, x_n\}$, taken from a total order, find the k-th smallest element in this set.

 • Also called order statistics, the ith order statistic is the ith smallest element.

 • Minimum - $k = 1$ - 1st order statistic

 • Maximum - $k = n$ - nth order statistic

 • Median - $k = \left\lfloor \frac{n}{2} \right\rfloor$

 • etc
THE SELECTION PROBLEM

• Naïve solution - SORT!

• We can sort the set in $O(n \log n)$ time and then index the k-th element.

• Can we solve the selection problem faster?

7 4 9 6 2 \rightarrow 2 4 6 7 9

k=3
THE MINIMUM (OR MAXIMUM)

Algorithm minimum(A)
Input: Array A
Output: minimum element in A

1. $m \leftarrow A[1]$
2. for $i \leftarrow 2$ to n do
3. \quad $m \leftarrow \min(m, A[i])$
4. return m

• Running Time
 • $O(n)$

• Is this the best possible?
QUICK-SELECT

- **Quick-select** is a randomized selection algorithm based on the prune-and-search paradigm:
 - **Prune**: pick a random element x (called pivot) and partition S into
 - L elements $< x$
 - E elements $= x$
 - G elements $> x$
 - **Search**: depending on k, either answer is in E, or we need to recur on either L or G

- **Note**: Partition same as Quicksort

\[
\begin{align*}
|L| & < k \leq |L| + |E| \\
& (\text{done})
\end{align*}
\]

\[
\begin{align*}
k & \leq |L| \\
k & > |L| + |E| \\
k' & = k - |L| - |E|
\end{align*}
\]
QUICK-SELECT VISUALIZATION

• An execution of quick-select can be visualized by a recursion path
 • Each node represents a recursive call of quick-select, and stores k and the remaining sequence

```
k = 5, S = (7, 4, 9, 3, 2, 6, 5, 1, 8)
```
```
k = 2, S = (7, 4, 9, 6, 5, 8)
```
```
k = 2, S = (7, 4, 6, 5)
```
```
k = 1, S = (7, 6, 5)
```
```
5
```
EXERCISE

- Best Case - even splits (n/2 and n/2)
- Worst Case - bad splits (1 and n-1)

• Derive and solve the recurrence relation corresponding to the best case performance of randomized quick-select.
• Derive and solve the recurrence relation corresponding to the worst case performance of randomized quick-select.
EXPECTED RUNNING TIME

* Consider a recursive call of quick-select on a sequence of size s
 * Good call: the size of L and G is at most $\frac{3s}{4}$
 * Bad call: the size of L and G is greater than $\frac{3s}{4}$

A call is good with probability $1/2$
 * $1/2$ of the possible pivots cause good calls:

![Diagram showing good and bad calls]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bad pivots Good pivots Bad pivots
EXPECTED RUNNING TIME

- Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two.
- Probabilistic Fact #2: Expectation is a linear function:
 - \(E(X + Y) = E(X) + E(Y) \)
 - \(E(cX) = cE(X) \)
- Let \(T(n) \) denote the expected running time of quick-select.
- By Fact #2, \(T(n) < T\left(\frac{3n}{4}\right) + bn \) *(expected # of calls before a good call)*
- By Fact #1, \(T(n) < T\left(\frac{3n}{4}\right) + 2bn \)
- That is, \(T(n) \) is a geometric series: \(T(n) < 2bn + 2b \left(\frac{3}{4}\right) n + 2b \left(\frac{3}{4}\right)^2 n + 2b \left(\frac{3}{4}\right)^3 n + \cdots \)
- So \(T(n) \) is \(O(n) \).
- We can solve the selection problem in \(O(n) \) expected time.
DETERMINISTIC SELECTION

• We can do selection in $O(n)$ worst-case time.

• Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 • Divide S into $\frac{n}{5}$ sets of 5 each
 • Find a median in each set
 • Recursively find the median of the “baby” medians.

• See Exercise C-12.56 for details of analysis.
INTERVIEW QUESTION 1

• You are given two sorted arrays, A and B, where A has a large enough buffer at the end to hold B. Write a method to merge B into A in sorted order.
INTERVIEW QUESTION 2

• Write a method to sort an array of strings so that all the anagrams are next to each other.
 • Two words are anagrams if they use the exact same letters, i.e., race and care are anagrams
INTERVIEW QUESTION 3

• Imagine you have a 2 TB file with one string per line. Explain how you would sort the file.