CH9.

PRIORITY QUEUES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
PRIORITY QUEUES

- Stores a collection of elements each with an associated “key” value
 - Can insert as many elements in any order
 - Only can inspect and remove a single element – the minimum (or maximum depending) element

- Applications
 - Standby Flyers
 - Auctions
 - Stock market
PRIORITY QUEUE ADT

• A priority queue stores a collection of entries.
• Each Entry is a key-value pair, with the ADT:
 • Key getKey()
 • Value getValue()
• Main methods of the Priority Queue ADT
 • Entry insert(k, v) inserts an entry with key k and value v
 • Entry removeMin() removes and returns the entry with smallest key, or null if the priority queue is empty
• Additional methods
 • Entry min() returns, but does not remove, an entry with smallest key, or null if the priority queue is empty
 • size(), isEmpty()
TOTAL ORDER RELATION

• Keys in a priority queue can be arbitrary objects on which an order is defined, e.g., integers
• Two distinct items in a priority queue can have the same key

• Mathematical concept of total order relation ≤
 • Reflexive property:
 \[k \leq k \]
 • Antisymmetric property:
 if \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \), then \(k_1 = k_2 \)
 • Transitive property:
 if \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \) then \(k_1 \leq k_3 \)
COMPARATOR ADT

• A comparator encapsulates the action of comparing two objects according to a given total order relation

• A generic priority queue uses an auxiliary comparator, i.e., it is external to the keys being compared, to compare two keys

• Primary method of the Comparator ADT

• Integer \(\text{compare}(x, y) \): returns an integer \(i \) such that
 • \(i < 0 \) if \(x < y \),
 • \(i = 0 \) if \(x = y \)
 • \(i > 0 \) if \(x > y \)

• An error occurs if \(a \) and \(b \) cannot be compared.
SORTING WITH A PRIORITY QUEUE

• We can use a priority queue to sort a set of comparable elements
• Insert the elements one by one with a series of insert(e) operations
• Remove the elements in sorted order with a series of removeMin() operations
• Running time depends on the PQ implementation
 \[T(n) = nT_{ins}(n) + nT_{rem}(n) \]

Algorithm PriorityQueueSort()
Input: List L storing n elements and a Comparator C
Output: Sorted List L

1. Priority Queue P using C
2. while \(\neg L\text{.isEmpty()} \) do
3. \(P\text{.insert}(L\text{.removeFirst()}) \)
4. while \(\neg P\text{.isEmpty()} \) do
5. \(L\text{.insertLast}(P\text{.removeMin()}) \)
6. return L
LIST-BASED PRIORITY QUEUE

Unsorted list implementation
• Store the items of the priority queue in a list, in arbitrary order

4 5 2 3 1

• Performance:
 • \texttt{insert(e)} takes $O(1)$ time since we can insert the item at the beginning or end of the list
 • \texttt{removeMin()} and \texttt{min()} take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Sorted list implementation
• Store the items of the priority queue in a list, sorted by key

1 2 3 4 5

• Performance:
 • \texttt{insert(e)} takes $O(n)$ time since we have to find the place where to insert the item
 • \texttt{removeMin()} and \texttt{min()} take $O(1)$ time since the smallest key is at the beginning of the list
SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list

4 5 2 3 1

• Running time of Selection-sort:
 • Inserting the elements into the priority queue with $n \text{ insert}(e)$ operations takes $O(n)$ time
 • Removing the elements in sorted order from the priority queue with $n \text{ removeMin}()$ operations takes time proportional to

$$\sum_{i=0}^{n} n - i = n + (n - 1) + \cdots + 2 + 1 = O(n^2)$$

• Selection-sort runs in $O(n^2)$ time
EXERCISE
SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list (do n \texttt{insert(e)} and then n \texttt{removeMin()}).

$$\begin{array}{c}
4 & 5 & 2 & 3 & 1
\end{array}$$

• Illustrate the performance of selection-sort on the following input sequence:
 • $(22, 15, 36, 44, 10, 3, 9, 13, 29, 25)$
• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List

• Running time of Insertion-sort:
 • Inserting the elements into the priority queue with $n \text{ insert}(e)$ operations takes time proportional to
 $$\sum_{i=0}^{n} i = 1 + 2 + \cdots + n = O(n^2)$$
 • Removing the elements in sorted order from the priority queue with a series of $n \text{ removeMin()}$ operations takes $O(n)$ time

• Insertion-sort runs in $O(n^2)$ time
EXERCISE
INSERTION-SORT

• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list (do n insert(e) and then n removeMin())

1 2 3 4 5

• Illustrate the performance of insertion-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
IN-PLACE INSERTION-SORT

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place (only $O(1)$ extra storage)
- A portion of the input list itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the list
 - We can use $\text{swap}(i, j)$ instead of modifying the list

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

1 2 3 4 5

1 2 3 4 5
HEAPS
WHAT IS A HEAP?

• A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 • **Heap-Order:** for every node \(v \) other than the root, \(\text{key}(v) \geq \text{key}(v.\text{parent}) \)
 • **Complete Binary Tree:** let \(h \) be the height of the heap
 • for \(i = 0 \ldots h - 1 \), there are \(2^i \) nodes on level \(i \)
 • at level \(h - 1 \), nodes are filled from left to right

• Can be used to store a priority queue efficiently
HEIGHT OF A HEAP

• **Theorem:** A heap storing n keys has height $O(\log n)$

• **Proof:** (we apply the complete binary tree property)

 - Let h be the height of a heap storing h keys
 - Since there are 2^i keys at level $i = 0 \ldots h - 1$ and at least one key on level h, we have $n \geq 1 + 2 + 4 + \ldots + 2^{h-1} + 1 = (2^h - 1) + 1 = 2^h$
 - Level h has at most 2^h nodes: $n \leq 2^{h+1} - 1$
 - Thus, $\log(n + 1) - 1 \leq h \leq \log n$
EXERCISE
HEAPS

• Let H be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible that a preorder traversal visits the elements in sorted order? What about an inorder traversal or a postorder traversal? In each case, either show such a heap or prove that none exists.
INSERTION INTO A HEAP

• \textit{insert}(e) consists of three steps
 • Find the insertion node \(z \) (the new last node)
 • Store \(e \) at \(z \) and expand \(z \) into an internal node
 • Restore the heap-order property (discussed next)
UPHEAP

• After the insertion of a new element e, the heap-order property may be violated

• Up-heap bubbling restores the heap-order property by swapping e along an upward path from the insertion node

• Upheap terminates when e reaches the root or a node whose parent has a key smaller than or equal to $\text{key}(e)$

• Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time
REMOVAL FROM A HEAP

• `removeMin()` corresponds to the removal of the root from the heap

• The removal algorithm consists of three steps
 • Replace the root with the element of the last node w
 • Compress w and its children into a leaf
 • Restore the heap-order property (discussed next)
DOWNHEAP

• After replacing the root element of the last node, the heap-order property may be violated

• Down-heap bubbling restores the heap-order property by swapping element \(e \) along a downward path from the root

• Downheap terminates when \(e \) reaches a leaf or a node whose children have keys greater than or equal to \(\text{key}(e) \)

• Since a heap has height \(O(\log n) \), downheap runs in \(O(\log n) \) time
UPDATING THE LAST NODE

• The insertion node can be found by traversing a path of $O(\log n)$ nodes
 • Go up until a left child or the root is reached
 • If a left child is reached, go to the right child
 • Go down left until a leaf is reached

• Similar algorithm for updating the last node after a removal
Consider a priority queue with \(n \) items implemented by means of a heap:
- the space used is \(O(n) \)
- \(\text{insert}(e) \) and \(\text{removeMin}() \) take \(O(\log n) \) time
- \(\text{min}(), \text{size}(), \text{and empty}() \) take \(O(1) \) time

Using a heap-based priority queue, we can sort a sequence of \(n \) elements in \(O(n \log n) \) time.

The resulting algorithm is called heap-sort.

Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort.
EXERCISE
HEAP-SORT

• Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap (do \(n \) insert(e) and then \(n \) removeMin())

• Illustrate the performance of heap-sort on the following input sequence (draw the heap at each step):
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
ARRAY-BASED HEAP IMPLEMENTATION

- We can represent a heap with n elements by means of a vector of length n
 - Links between nodes are not explicitly stored
 - The leaves are not represented
 - The cell at index 0 is the root
- For the node at index i
 - the left child is at index $2i + 1$
 - the right child is at index $2i + 2$
- $\text{insert}(e)$ corresponds to inserting at index $n + 1$
- $\text{removeMin}()$ corresponds to removing element at index n
- Yields in-place heap-sort
Priority Queue Summary

<table>
<thead>
<tr>
<th></th>
<th>insert(e)</th>
<th>removeMin()</th>
<th>PQ-Sort total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered List</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>(Insertion Sort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unordered List</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>(Selection Sort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Heap,</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n log n)</td>
</tr>
<tr>
<td>Array-based Heap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Heap Sort)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MERGING TWO HEAPS

• We are given two heaps and a new element e
• We create a new heap with a root node storing e and with the two heaps as subtrees
• We perform downheap to restore the heap-order property
Bottom-up heap construction

• We can construct a heap storing \(n \) given elements in using a bottom-up construction with \(\log n \) phases.

• In phase \(i \), pairs of heaps with \(2^i - 1 \) elements are merged into heaps with \(2^{i+1} - 1 \) elements.
EXAMPLE
EXAMPLE
EXAMPLE
ANALYSIS

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.
ADAPTABLE PRIORITY QUEUES

• One weakness of the priority queues so far is that we do not have an ability to update individual entries, like in a changing price market or bidding service.

• Recall that \texttt{insert}(e) returns an entry. We need to save these values to be able to adapt them.

• Additional ADT support (also includes standard priority queue functionality)
 • Entry \texttt{remove}(e) — remove a specific entry \(e\)
 • Key \texttt{replaceKey}(e, k) — replace the key of entry \(e\) with \(k\), and return the old key.
 • Value \texttt{replaceValue}(e, k) — replace the value of entry \(e\) with \(k\), and return the old value.
LOCATION-AWARE ENTRY

- **Locators** decouple positions and entries in order to support efficient adaptable priority queue implementations (i.e., in a heap)
- Each position has an associated locator
- Each locator stores a pointer to its position and memory for the entry
POSITIONS VS. LOCATORS

- **Position**
 - represents a “place” in a data structure
 - related to other positions in the data structure (e.g., previous/next or parent/child)
 - often implemented as a pointer to a node or the index of an array cell

- **Position-based ADTs (e.g., sequence and tree)** are fundamental data storage schemes

- **Locator**
 - identifies and tracks a (key, element) item
 - unrelated to other locators in the data structure
 - often implemented as an object storing the item and its position in the underlying structure

- **Key-based ADTs (e.g., priority queue)** can be augmented with locator-based methods
INTERVIEW QUESTION 1

• Numbers are randomly generated and passed to a method. Write a program to find and maintain the median value as new values are generated.