CH8
TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
WHAT IS A TREE

• In computer science, a tree is an abstract model of a hierarchical structure.

• A tree consists of nodes with a parent-child relation.

• Applications:
 • Organization charts
 • File systems
 • Programming environments
A tree T is a set of nodes storing elements in a parent-child relationship with the following properties:

- If T is nonempty, it has a special node called the **root** of T, that has no parent.
- Each node v of T different from the root has a unique **parent** node w; every node with parent w is a **child** of w.

Note that trees can be empty and can be defined recursively!

Note each node can have zero or more children.
TREE TERMINOLOGY

- **Root**: node without parent (A)
- **Internal node**: node with at least one child (A, B, C, F)
- **Leaf** (aka External node): node without children (E, I, J, K, G, H, D)
- **Ancestors** of a node: parent, grandparent, great-grandparent, etc.
- **Siblings** of a node: Any node which shares a parent
- **Depth** of a node: number of ancestors
- **Height** of a tree: maximum depth of any node (3)
- **Descendant** of a node: child, grandchild, great-grandchild, etc.

- **Subtree**: tree consisting of a node and its descendants
- **Edge**: a pair of nodes \((u, v)\) such that \(u\) is a parent of \(v\) \(((C, H))\)
- **Path**: A sequence of nodes such that any two consecutive nodes form an edge\((A, B, F, J)\)
- **A tree is ordered** when there is a linear ordering defined for the children of each node
• Answer the following questions about the tree shown on the right:
 • What is the size of the tree (number of nodes)?
 • Classify each node of the tree as a root, leaf, or internal node
 • List the ancestors of nodes B, F, G, and A. Which are the parents?
 • List the descendants of nodes B, F, G, and A. Which are the children?
 • List the depths of nodes B, F, G, and A.
 • What is the height of the tree?
 • Draw the subtrees that are rooted at node F and at node K.
TREE ADT

• We use positions to abstract nodes as we don't want to expose the internals of our implementation

• Generic methods:
 • integer size()
 • boolean isEmpty()
 • Iterator iterator()
 • Iterable positions()

• Accessor methods:
 • position root()
 • position parent(p)
 • Iterable children(p)
 • Integer numChildren(p)

• Query methods:
 • boolean isInternal(p)
 • boolean isExternal(p)
 • boolean isRoot(p)

• Additional update methods may be defined by data structures implementing the Tree ADT
A LINKED STRUCTURE FOR GENERAL TREES

• A node is represented by an object storing
 • Element
 • Parent node
 • Sequence of children nodes

• Node objects implement the Position ADT
PREORDER TRAVERSAL

• A traversal visits the nodes of a tree in a systematic manner

• In a preorder traversal, a node is visited before its descendants

• Application: print a structured document

Algorithm preOrder(v)
Input: Node v
1. visit(v)
2. for each child w of v do
3. preOrder(w)

Make Money Fast!

1. Motivations
 1.1 Greed
 1.2 Avidity

2. Methods
 2.1 Stock Fraud
 2.2 Ponzi Scheme
 2.3 Bank Robbery

References
EXERCISE: PREORDER TRAVERSAL

• In a **preorder traversal**, a node is visited before its descendants
• List the nodes of this tree in preorder traversal order.

Algorithm preOrder(v)
Input: Node v
1. visit(v)
2. for each child w of v do
3. preOrder(w)
POSTORDER TRAVERSAL

• In a **postorder traversal**, a node is visited **after its descendants**
• Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)

Input: Node v

1. **for each** child w of v **do**
2. postOrder(w)
3. visit(v)
EXERCISE: POSTORDER TRAVERSAL

• In a **postorder traversal**, a node is visited after its descendants

• List the nodes of this tree in postorder traversal order.

Algorithm `postOrder(v)`

Input: Node `v`

1. **for each** child `w` of `v` **do**
2. `postOrder(w)`
3. `visit(v)`
A **binary tree** is a tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair

We call the children of an internal node **left child** and **right child**

If a child has only one child, the tree is **improper**

Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree

Applications
- Arithmetic expressions
- Decision processes
- Searching
ARITHMETIC EXPRESSION TREE

• Binary tree associated with an arithmetic expression
 • Internal nodes: operators
 • Leaves: operands
• Example: arithmetic expression tree for the expression \((2 \times (a - 1) + (3 \times b))\)
DEcision Tree

- Binary tree associated with a decision process
 - Internal nodes: questions with yes/no answer
 - Leaves: decisions

- Example: dining decision

Want a fast meal?

- Yes: How about coffee?
 - Yes: Starbucks
 - No: Spike's

- No: On expense account?
 - Yes: Al Forno
 - No: Café Paragon
PROPERTIES OF BINARY TREES

• Notation
 • n number of nodes
 • e number of external nodes
 • i number of internal nodes
 • h height

• Properties:
 • $e = i + 1$
 • $n = 2e - 1$
 • $h \leq i$
 • $h \leq \frac{n-1}{2}$
 • $e \leq 2^h$
 • $h \geq \log_2 e$
 • $h \geq \log_2 (n + 1) - 1$
BINARY TREE ADT

• The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT

• Additional position methods:
 • position left(p)
 • position right(p)
 • position sibling(p)

• The above methods return null when there is no left, right, or sibling of p, respectively

• Update methods may also be defined by data structures implementing the Binary Tree ADT
A LINKED STRUCTURE FOR BINARY TREES

- A node is represented by an object storing:
 - Element
 - Parent node
 - Left child node
 - Right child node
ARRAY-BASED REPRESENTATION OF BINARY TREES

• Nodes are stored in an array A

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>D</th>
<th>...</th>
<th>G</th>
<th>H</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

• Node v is stored at $A[\text{rank}(V)]$
 • $\text{rank}(\text{root}) = 0$
 • if node is the left child of parent(node),
 $\text{rank}(\text{node}) = 2 \times \text{rank}(\text{parent}(\text{node})) + 1$
 • if node is the right child of parent(node),
 $\text{rank}(\text{node}) = 2 \times \text{rank}(\text{parent}(\text{node})) + 2$
INORDER TRAVERSAL

• In an **inorder traversal** a node is visited after its left subtree and before its right subtree

• Application: draw a binary tree
 • \(x(v) = \) inorder rank of \(v \)
 • \(y(v) = \) depth of \(v \)

Algorithm \(\text{inOrder}(v) \)

Input: Node \(v \)

1. if \(v\text{.left}() \neq \text{null} \) then
2. \(\text{inOrder}(v\text{.left}()) \)
3. visit\((v)\)
4. if \(v\text{.right}() \neq \text{null} \) then
5. \(\text{inOrder}(v\text{.right}()) \)
EXERCISE: INORDER TRAVERSAL

• In an in-order traversal a node is visited after its left subtree and before its right subtree
• List the nodes of this tree in in-order traversal order.

Algorithm inOrder(v)
Input: Node v
1. if v.left() ≠ null then
2. inOrder(v.left())
3. visit(v)
4. if v.right() ≠ null then
5. inOrder(v.right())
EXERCISE: PREORDER & INORDER TRAVERSAL

• Draw a (single) binary tree T, such that
 • Each internal node of T stores a single character
 • A preorder traversal of T yields EXAMFUN
 • An inorder traversal of T yields MAFXUEN
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an inorder traversal
 • print operand or operator when visiting node
 • print "(" before traversing left subtree
 • print ")" after traversing right subtree

Algorithm printExpr(v)

Input: Node v

1. if v.left() ≠ null then
2. print("(")
3. printExpr(v.left())
4. print(v.element())
5. if v.right() ≠ null then
6. printExpr(v.right())
7. print(")")

[((2 × (a − 1)) + (3 × b))]
APPLICATION
EVALUATE ARITHMETIC EXPRESSIONS

• Specialization of a postorder traversal
 • recursive method returning the value of a subtree
 • when visiting an internal node, combine the values of the subtrees

Algorithm $\text{evalExpr}(v)$

Input: Node v

1. if v.isExternal() then
2. return v.element()
3. $x \leftarrow \text{evalExpr}(v.\text{left}())$
4. $y \leftarrow \text{evalExpr}(v.\text{right}())$
5. $\circ \leftarrow \text{operator stored at } v$
6. return $x \circ y$
EXERCISE
ARITHMETIC EXPRESSIONS

• Draw an expression tree that has
 • Four leaves, storing the values 1, 5, 6, and 7
 • 3 internal nodes, storing operations +, -, *, /
 operators can be used more than once, but each internal node stores only one
 • The value of the root is 21
EULER TOUR TRAVERSAL

• Generic traversal of a binary tree

• Includes as special cases the preorder, postorder and inorder traversals

• Walk around the tree and visit each node three times:
 • on the left (preorder)
 • from below (inorder)
 • on the right (postorder)

\[
\begin{array}{c}
\times \\
2 \\
B \\
L \\
R
\end{array}
\]
EULER TOUR TRAVERSAL

Algorithm `eulerTour(v)`

Input: Node `v`
1. `leftVisit(v)`
2. **if** `v.left() ≠ null` **then**
3. `eulerTour(v.left())`
4. `bottomVisit(v)`
5. **if** `v.right() ≠ null` **then**
6. `eulerTour(v.right())`
7. `rightVisit(v)`
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an Euler Tour traversal
 • Left-visit: if node is internal, print “(”
 • Bottom-visit: print value or operator stored at node
 • Right-visit: if node is internal, print “)”

\[(2 \times (a - 1)) + (3 \times b)\]
• Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.
INTERVIEW QUESTION 2

• Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).