CH9.

PRIORITY QUEUES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
PRIORITY QUEUES

• Stores a collection of elements each with an associated “key” value
 • Can insert as many elements in any order
 • Only can inspect and remove a single element – the minimum (or maximum depending) element

• Applications
 • Standby Flyers
 • Auctions
 • Stock market
PRIORITY QUEUE ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - `insert(k, v)` inserts an entry with key k and value v
 - Entry `removeMin()` removes and returns the entry with smallest key, or null if the priority queue is empty
- Additional methods
 - Entry `min()` returns, but does not remove, an entry with smallest key, or null if the priority queue is empty
 - `size()`, `isEmpty()`
TOTAL ORDER RELATION

• Keys in a priority queue can be arbitrary objects on which an order is defined, e.g., integers
• Two distinct items in a priority queue can have the same key
• Mathematical concept of total order relation \leq
 • **Reflexive property:**
 $$k \leq k$$
 • **Antisymmetric property:**
 if $k_1 \leq k_2$ and $k_2 \leq k_1$, then $k_1 = k_2$
 • **Transitive property:**
 if $k_1 \leq k_2$ and $k_2 \leq k_3$ then $k_1 \leq k_3$
ENTRY ADT

• An entry in a priority queue is simply a key-value pair.

• Priority queues store entries to allow for efficient insertion and removal based on keys.

• Methods:
 • Key `getKey()`: returns the key for this entry.
 • Value `getValue()`: returns the value associated with this entry.
COMPARATOR ADT

• A comparator encapsulates the action of comparing two objects according to a given total order relation

• A generic priority queue uses an auxiliary comparator, i.e., it is external to the keys being compared

• When the priority queue needs to compare two keys, it uses its comparator

• Primary method of the Comparator ADT

 Integer \texttt{compare}(x, y): returns an integer \(i \) such that
 \begin{itemize}

 \item \(i < 0 \) if \(x < y \),
 \item \(i = 0 \) if \(x = y \)
 \item \(i > 0 \) if \(x > y \)
 \item An error occurs if \(a \) and \(b \) cannot be compared.
 \end{itemize}
We can use a priority queue to sort a set of comparable elements.

Insert the elements one by one with a series of `insert(e)` operations.

Remove the elements in sorted order with a series of `removeMin()` operations.

Running time depends on the PQ implementation.

Algorithm PriorityQueueSort()

Input: List L storing n elements and a Comparator C

Output: Sorted List L

1. Priority Queue P using comparator C
2. while $\neg L.isEmpty()$ do
3. $P.insert(L.first())$
4. $L.removeFirst()$
5. while $\neg P.isEmpty()$ do
6. $L.insertLast(P.min())$
7. $P.removeMin()$
8. return L
LIST-BASED PRIORITY QUEUE

Unsorted list implementation

• Store the items of the priority queue in a list, in arbitrary order

4 5 2 3 1

• Performance:
 • insert(e) takes $O(1)$ time since we can insert the item at the beginning or end of the list
 • removeMin() and min() take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Sorted list implementation

• Store the items of the priority queue in a list, sorted by key

1 2 3 4 5

• Performance:
 • insert(e) takes $O(n)$ time since we have to find the place where to insert the item
 • removeMin() and min() take $O(1)$ time since the smallest key is at the beginning of the list
Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list.

Running time of Selection-sort:
- Inserting the elements into the priority queue with $n \text{ insert}(e)$ operations takes $O(n)$ time.
- Removing the elements in sorted order from the priority queue with $n \text{ removeMin}()$ operations takes time proportional to

$$
\sum_{i=0}^{n} n - i = n + (n - 1) + \cdots + 2 + 1 = O(n^2)
$$

Selection-sort runs in $O(n^2)$ time.
EXERCISE
SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list (do n insert(e) and then n removeMin())

• Illustrate the performance of selection-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List.

- Running time of Insertion-sort:
 - Inserting the elements into the priority queue with $n \text{ insert}(e)$ operations takes time proportional to
 $$\sum_{i=0}^{n} i = 1 + 2 + \cdots + n = O(n^2)$$
 - Removing the elements in sorted order from the priority queue with a series of $n \text{ removeMin}()$ operations takes $O(n)$ time

- Insertion-sort runs in $O(n^2)$ time
EXERCISE
INSERTION-SORT

• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list (do n insert(e) and then n removeMin())

• Illustrate the performance of insertion-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
IN-PLACE INSERTION-SORT

• Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place (only $O(1)$ extra storage)

• A portion of the input list itself serves as the priority queue

• For in-place insertion-sort
 • We keep sorted the initial portion of the list
 • We can use $\text{swap}(i, j)$ instead of modifying the list
HEAPS
WHAT IS A HEAP?

• A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 • **Heap-Order**: for every node \(v \) other than the root, \(\text{key}(v) \geq \text{key}(v.\text{parent}) \)
 • **Complete Binary Tree**: let \(h \) be the height of the heap
 - for \(i = 0 \) ... \(h - 1 \), there are \(2^i \) nodes on level \(i \)
 - at level \(h - 1 \), nodes are filled from left to right

• Can be used to store a priority queue efficiently
HEIGHT OF A HEAP

- **Theorem**: A heap storing \(n \) keys has height \(O(\log n) \)
- **Proof**: (we apply the complete binary tree property)
 - Let \(h \) be the height of a heap storing \(h \) keys
 - Since there are \(2^i \) keys at level \(i = 0 \) \(\ldots \) \(h - 1 \) and at least one key on level \(h \), we have
 \[
 n \geq 1 + 2 + 4 + \ldots + 2^{h-1} + 1 = (2^h - 1) + 1 = 2^h
 \]
 - Level \(h \) has at most \(2^h \) nodes: \(n \leq 2^{h+1} - 1 \)
 - Thus, \(\log(n + 1) - 1 \leq h \leq \log n \)

<table>
<thead>
<tr>
<th>depth</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(h - 1)</td>
<td>(2^{h-1})</td>
</tr>
<tr>
<td>(h)</td>
<td>1</td>
</tr>
</tbody>
</table>
EXERCISE
HEAPS

• Let H be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible that a preorder traversal visits the elements in sorted order? What about an inorder traversal or a postorder traversal? In each case, either show such a heap or prove that none exists.
INSERTION INTO A HEAP

- \textit{insert}(e) consists of three steps
 - Find the insertion node \(z \) (the new last node)
 - Store \(e \) at \(z \) and expand \(z \) into an internal node
 - Restore the heap-order property (discussed next)
UPHEAP

• After the insertion of a new element e, the heap-order property may be violated
• Up-heap bubbling restores the heap-order property by swapping e along an upward path from the insertion node
• Upheap terminates when e reaches the root or a node whose parent has a key smaller than or equal to $\text{key}(e)$
• Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time
REMOVAL FROM A HEAP

- **removeMin()** corresponds to the removal of the root from the heap.

- The removal algorithm consists of three steps:
 - Replace the root with the element of the last node w.
 - Compress w and its children into a leaf.
 - Restore the heap-order property (discussed next).
DOWNHEAP

- After replacing the root element of the last node, the heap-order property may be violated.
- **Down-heap bubbling** restores the heap-order property by swapping element e along a downward path from the root.
- Downheap terminates when e reaches a leaf or a node whose children have keys greater than or equal to $\text{key}(e)$.
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.
The insertion node can be found by traversing a path of $O(\log n)$ nodes:

- Go up until a left child or the root is reached
- If a left child is reached, go to the right child
- Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
HEAP-SORT

• Consider a priority queue with n items implemented by means of a heap
 • the space used is $O(n)$
 • `insert(e)` and `removeMin()` take $O(\log n)$ time
 • `min()`, `size()`, and `empty()` take $O(1)$ time

• Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
• The resulting algorithm is called heap-sort
• Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort
EXERCISE
HEAP-SORT

• Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap (do \(n \) insert(e) and then \(n \) removeMin())

• Illustrate the performance of heap-sort on the following input sequence (draw the heap at each step):
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
ARRAY-BASED HEAP IMPLEMENTATION

- We can represent a heap with \(n \) elements by means of a vector of length \(n \)
 - Links between nodes are not explicitly stored
 - The leaves are not represented
 - The cell at index 0 is the root
- For the node at index \(i \)
 - the left child is at index \(2i + 1 \)
 - the right child is at index \(2i + 2 \)
- \(\text{insert}(e) \) corresponds to inserting at index \(n + 1 \)
- \(\text{removeMin()} \) corresponds to removing element at index \(n \)
- Yields in-place heap-sort
Priority Queue Summary

<table>
<thead>
<tr>
<th></th>
<th>insert(e)</th>
<th>removeMin()</th>
<th>PQ-Sort total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered List (Insertion Sort)</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Unordered List (Selection Sort)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Binary Heap, Vector-based Heap (Heap Sort)</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>
MERGING TWO HEAPS

• We are given two heaps and a new element e

• We create a new heap with a root node storing e and with the two heaps as subtrees

• We perform downheap to restore the heap-order property
We can construct a heap storing \(n \) given elements in using a bottom-up construction with \(\log n \) phases.

In phase \(i \), pairs of heaps with \(2^i - 1 \) elements are merged into heaps with \(2^{i+1} - 1 \) elements.
EXAMPLE
EXAMPLE
EXAMPLE
ANALYSIS

• We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).

• Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.

• Thus, bottom-up heap construction runs in $O(n)$ time.

• Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.
ADAPTABLE PRIORITY QUEUES

• One weakness of the priority queues so far is that we do not have an ability to update individual entries, like in a changing price market or bidding service.

• We incorporate concept of positions to accomplish this (similar to List).

• Additional ADT support (also includes standard priority queue functionality):
 • Position `insert(e)` – insert element `e` into priority queue and return a position referring to this entry.
 • Entry `remove(p)` – remove the entry referenced by position `p`.
 • Position `replace(p, e)` – replace with `e` the element associated with position `p` and return the position of the altered entry. Can work with key or value...
• **Locators** decouple positions and entries in order to support efficient adaptable priority queue implementations (i.e., in a heap)

• Each position has an associated locator

• Each locator stores a pointer to its position and memory for the entry
POSSESSIONS VS. LOCATORS

- **Position**
 - represents a “place” in a data structure
 - related to other positions in the data structure (e.g., previous/next or parent/child)
 - often implemented as a pointer to a node or the index of an array cell

- **Position-based ADTs** (e.g., sequence and tree) are fundamental data storage schemes

- **Locator**
 - identifies and tracks a (key, element) item
 - unrelated to other locators in the data structure
 - often implemented as an object storing the item and its position in the underlying structure

- **Key-based ADTs** (e.g., priority queue) can be augmented with locator-based methods