WHAT IS A TREE

- In computer science, a tree is an abstract model of a hierarchical structure.
- A tree consists of nodes with a parent-child relation.
- Applications:
 - Organization charts
 - File systems
 - Programming environments
FORMAL DEFINITION

• A tree T is a set of nodes storing elements in a parent-child relationship with the following properties:
 • If T is nonempty, it has a special node called the root of T, that has no parent
 • Each node v of T different from the root has a unique parent node w; every node with parent w is a child of w

• Note that trees can be empty and can be defined recursively!

• Note each node can have zero or more children
Tree Terminology

- **Root**: node without parent (A)
- **Internal node**: node with at least one child (A, B, C, F)
- **Leaf** (aka External node): node without children (E, I, J, K, G, H, D)
- **Ancestors** of a node: parent, grandparent, great-grandparent, etc.
- **Siblings** of a node: Any node which shares a parent
- **Depth** of a node: number of ancestors
- **Height** of a tree: maximum depth of any node (3)
- **Descendant** of a node: child, grandchild, great-grandchild, etc.
- **Subtree**: tree consisting of a node and its descendants
- **Edge**: a pair of nodes \((u, v)\) such that \(u\) is a parent of \(v\) \(((C, H))\)
- **Path**: A sequence of nodes such that any two consecutives nodes form an edge \((A, B, F, J)\)
- A tree is ordered when there is a linear ordering defined for the children of each node
EXERCISE

• Answer the following questions about the tree shown on the right:
 • What is the size of the tree (number of nodes)?
 • Classify each node of the tree as a root, leaf, or internal node
 • List the ancestors of nodes B, F, G, and A. Which are the parents?
 • List the descendants of nodes B, F, G, and A. Which are the children?
 • List the depths of nodes B, F, G, and A.
 • What is the height of the tree?
 • Draw the subtrees that are rooted at node F and at node K.
TREE ADT

• We use positions to abstract nodes as we don't want to expose the internals of our implementation

• Generic methods:
 • Integer size()
 • boolean isEmpty()
 • Iterator iterator()
 • Iterable positions()

• Accessor methods:
 • Position root()
 • Position parent(p)
 • Iterable children(p)
 • Integer numChildren(p)

• Query methods:
 • Boolean isInternal(p)
 • Boolean isExternal(p)
 • Boolean isRoot(p)

• Additional update methods may be defined by data structures implementing the Tree ADT
A LINKED STRUCTURE FOR GENERAL TREES

- A node is represented by an object storing:
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT
public class GeneralTreeNode<ElementType> implements Position<ElementType> {
 ElementType element;
 GeneralTreeNode<ElementType> parent;
 ArrayList<GeneralTreeNode<ElementType>> children;
 // ... Constructors, accessors, setters
}
A traversal visits the nodes of a tree in a systematic manner.

In a preorder traversal, a node is visited before its descendants.

Application: print a structured document.

Algorithm preOrder

Input: Tree T

1. `preOrder(T, T.root())`

2. **for each** Position $c \in T$'s children(p) **do**
 3. `preOrder(T, c)`

Make Money Fast!

1. **Motivations**
 - 1.1 Greed
 - 1.2 Avidity

2. **Methods**
 - 2.1 Stock Fraud
 - 2.2 Ponzi Scheme
 - 2.3 Bank Robbery

9. **References**
EXERCISE: PREORDER TRAVERSAL

• In a **preorder traversal**, a node is visited before its descendants

• List the nodes of this tree in preorder traversal order.

Algorithm **preOrder**

Input: Tree T

1. $\text{preOrder}(T, T.\text{root}())$

Algorithm **preOrder**

Input: Tree T, Position p

1. $\text{visit-action}(p)$
2. **for each** Position $c \in T.\text{children}(p)$ **do**
3. $\text{preOrder}(T, c)$
POSTORDER TRAVERSAL

- In a postorder traversal, a node is visited after its descendants.
- Application: compute space used by files in a directory and its subdirectories.

Algorithm postOrder
Input: Tree T
1. postOrder(T, T.root())

Algorithm postOrder
Input: Tree T, Position p
1. for each Position $c \in T$.children(p) do
2. postOrder(T, c)
3. visit-action(p)
EXERCISE: POSTORDER TRAVERSAL

• In a postorder traversal, a node is visited after its descendants

• List the nodes of this tree in postorder traversal order.

Algorithm postOrder
Input: Tree T
1. postOrder($T, T\.root()$)

Algorithm postOrder
Input: Tree T, Position p
1. for each Position $c \in T\.children(p)$ do
2. postOrder(T, c)
3. visit-action(p)
BINARY TREE

- A **binary tree** is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair

- We call the children of an internal node **left child** and **right child**

- If a child has only one child, the tree is **improper**

- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

Applications

- Arithmetic expressions
- Decision processes
- Searching
ARITHMETIC EXPRESSION TREE

• Binary tree associated with an arithmetic expression
 • Internal nodes: operators
 • Leaves: operands

• Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$
DECISION TREE

- Binary tree associated with a decision process
 - Internal nodes: questions with yes/no answer
 - Leaves: decisions

Example: dining decision

Want a fast meal?

- Yes: How about coffee?
 - Yes: Starbucks
 - No: Spike’s

- No: On expense account?
 - Yes: Al Forno
 - No: Café Paragon
PROPERTIES OF BINARY TREES

• Notation
 • n number of nodes
 • e number of external nodes
 • i number of internal nodes
 • h height

• Properties:
 • $e = i + 1$
 • $n = 2e - 1$
 • $h \leq i$
 • $h \leq \frac{n-1}{2}$
 • $e \leq 2^h$
 • $h \geq \log_2 e$
 • $h \geq \log_2 (n + 1) - 1$
BINARY TREE ADT

• The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT

• Additional position methods:
 • Position left(p)
 • Position right(p)
 • Position sibling(p)

• The above methods return null when there is no left, right, or sibling of p, respectively

• Update methods may also be defined by data structures implementing the Binary Tree ADT
A LINKED STRUCTURE FOR BINARY TREES

• A node is represented by an object storing
 • Element
 • Parent node
 • Left child node
 • Right child node
public class BinaryTreeNode<ElementType>
 implements Position<ElementType> {
 ElementType element;
 BinaryTreeNode<ElementType> parent, left, right;
 // ... Constructors, accessors, setters
}
ARRAY-BASED REPRESENTATION OF BINARY TREES

• Nodes are stored in an array A

- Node v is stored at $A[\text{rank}(V)]$
 - $\text{rank}(\text{root}) = 0$
 - if node is the left child of parent(node),
 $\text{rank}(\text{node}) = 2 \times \text{rank}(\text{parent}(\text{node})) + 1$
 - if node is the right child of parent(node),
 $\text{rank}(\text{node}) = 2 \times \text{rank}(\text{parent}(\text{node})) + 2$
INORDER TRAVERSAL

- In an **inorder traversal** a node is visited after its left subtree and before its right subtree.
- Application: draw a binary tree
 - $x(v)$ = inorder rank of v
 - $y(v)$ = depth of v

Algorithm inOrder

Input: Tree T

1. `inOrder(T, T.root())`

Algorithm inOrder

Input: Tree T, Position p

1. **if** $T\text{.left}(p) \neq \text{null}$ **then**
2. `inOrder(T, T.tree(left(p))`
3. visit-action(p)
4. **if** $T\text{.right}(p) \neq \text{null}$ **then**
5. `inOrder(T, T.tree(right(p))`

[Diagram of a binary tree with labels and inorder traversal order: 1, 2, 3, 4, 5, 6, 7, 8, 9]
EXERCISE: INORDER TRAVERSAL

• In an **inorder traversal** a node is visited after its left subtree and before its right subtree
• List the nodes of this tree in inorder traversal order.

Algorithm inOrder
Input: Tree \(T \)
1. inOrder(\(T, T\).root())

Algorithm inOrder
Input: Tree \(T \), Position \(p \)
1. if \(T\).left(\(p) \neq \text{null} \) then
2. inOrder(\(T, T\).left(\(p))
3. visit-action(p)
4. if \(T\).right(\(p) \neq \text{null} \) then
5. inOrder(\(T, T\).right(\(p))
EXERCISE: PREORDER & INORDER TRAVERSAL

• Draw a (single) binary tree T, such that
 • Each internal node of T stores a single character
 • A preorder traversal of T yields EXAMFUN
 • An inorder traversal of T yields MAFXUEN
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an inorder traversal
 • print operand or operator when visiting node
 • print "(" before traversing left subtree
 • print ")" after traversing right subtree

Algorithm printExpr
Input: Tree T
1. printExpr(T, T.root())

Algorithm printExpr
Input: Tree T, Position p
1. if T.left(p)\neq null then
2. print("(")
3. printExpr(T, T.left(p))
4. print(p.getElement())
5. if T.right(p)\neq null then
6. printExpr(T, T.right(p))
7. print(")")

$((2 \times (a - 1)) + (3 \times b))$
APPLICATION
EVALUATE ARITHMETIC EXPRESSIONS

• Specialization of a postorder traversal
 • recursive method returning the value of a subtree
 • when visiting an internal node, combine the values of the subtrees

```
Algorithm evalExpr
Input: Tree T
1. evalExpr(T, T.root())
```

```
Algorithm evalExpr
Input: Tree T, Position p
1. if T.isExternal(p) then
2.   return p.getElement()
3. x ← evalExpr(T, T.left(p))
4. y ← evalExpr(T, T.right(p))
5. ∘ ← operator stored at v
6. return x ∘ y
```
EXERCISE
ARITHMETIC EXPRESSIONS

• Draw an expression tree that has
 • Four leaves, storing the values 1, 5, 6, and 7
 • 3 internal nodes, storing operations +, -, *, /

 * operators can be used more than once, but each internal node stores only one
 • The value of the root is 21
EULER TOUR TRAVERSAL

• Generic traversal of a binary tree
• Includes as special cases the preorder, postorder and inorder traversals
• Walk around the tree and visit each node three times:
 • on the left (preorder)
 • from below (inorder)
 • on the right (postorder)
EULER TOUR TRAVERSAL

Algorithm eulerTour
Input: Tree T
1. `eulerTour(T, T.root())`

Algorithm eulerTour
Input: Tree T, Position p
1. `left-visit-action(p)`
2. if T.
left(p) ≠ null then
3. `eulerTour(T, T.left(p))`
4. `bottom-visit-action(p)`
5. if T.
right(p) ≠ null then
6. `eulerTour(T, T.right(p))`
7. `right-visit-action(p)`
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an Euler Tour traversal
 • Left-visit: if node is internal, print “(”
 • Bottom-visit: print value or operator stored at node
 • Right-visit: if node is internal, print “)”

```
2 × − 1 × 3 × b
```

\(((2 \times (a - 1)) + (3 \times b))\)
INTERVIEW QUESTION 1

• Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.
INTERVIEW QUESTION 2

• Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).

EXAM 1

• Hack sheet – you can have a single 8 ½" x 11" paper with handwritten notes on both sides with you during the exam. You can put anything on it, but summary slides and the generic tree traversal algorithms make great candidates.

• No Java language/programming questions. Lecture material only.

• Format – 5 questions and a bonus
 • Q1 – T/F questions (similar to quizzes)
 • Q2 – Fill-in-the-blank (similar to quizzes)
 • Q3 – Write and/or analyze algorithm using Stacks, Queues, Deques (similar to homework)
 • Q4 – Write and/or analyze algorithm using Lists (similar to homework)
 • Q5 – Write and/or analyze algorithm using Trees (similar to homework)
 • Bonus – ?