CH8
TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
WHAT IS A TREE

• In computer science, a tree is an abstract model of a hierarchical structure
• A tree consists of nodes with a parent-child relation
• Applications:
 • Organization charts
 • File systems
 • Programming environments
FORMAL DEFINITION

• A **tree** T is a set of **nodes** storing elements in a **parent-child** relationship with the following properties:
 • If T is nonempty, it has a special node called the **root** of T, that has no parent
 • Each node v of T different from the root has a unique **parent** node w; every node with parent w is a **child** of w

• Note that trees can be empty and can be defined recursively!

• Note each node can have zero or more children
TREE TERMINOLOGY

• **Root**: node without parent (A)
• **Internal node**: node with at least one child (A, B, C, F)
• **Leaf** (aka External node): node without children (E, I, J, K, G, H, D)
• **Ancestors** of a node: parent, grandparent, great-grandparent, etc.
• **Siblings** of a node: Any node which shares a parent
• **Depth** of a node: number of ancestors
• **Height** of a tree: maximum depth of any node (3)
• **Descendant** of a node: child, grandchild, great-grandchild, etc.
• **Subtree**: tree consisting of a node and its descendants
• **Edge**: a pair of nodes \((u, v)\) such that \(u\) is a parent of \(v\) \((C, H)\)
• **Path**: A sequence of nodes such that any two consecutives nodes form an edge\((A, B, F, J)\)
• A tree is **ordered** when there is a linear ordering defined for the children of each node
EXERCISE

• Answer the following questions about the tree shown on the right:
 • What is the size of the tree (number of nodes)?
 • Classify each node of the tree as a root, leaf, or internal node
 • List the ancestors of nodes B, F, G, and A. Which are the parents?
 • List the descendants of nodes B, F, G, and A. Which are the children?
 • List the depths of nodes B, F, G, and A.
 • What is the height of the tree?
 • Draw the subtrees that are rooted at node F and at node K.
TREE ADT

We use positions to abstract nodes as we don’t want to expose the internals of our implementation

Generic methods:
- Integer \texttt{size}()
- boolean \texttt{isEmpty}()
- Iterator \texttt{iterator}()
- Iterable \texttt{positions}()

Accessor methods:
- Position \texttt{root}()
- Position \texttt{parent}(p)
- Iterable \texttt{children}(p)
- Integer \texttt{numChildren}(p)

Query methods:
- Boolean \texttt{isInternal}(p)
- Boolean \texttt{isExternal}(p)
- Boolean \texttt{isRoot}(p)

Additional update methods may be defined by data structures implementing the Tree ADT
A LINKED STRUCTURE FOR GENERAL TREES

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT
public class GeneralTreeNode<ElementType> implements Position<ElementType> {
 ElementType element;
 GeneralTreeNode<ElementType> parent;
 ArrayList<GeneralTreeNode<ElementType>> children;
 // ... Constructors, accessors, setters
}
PREORDER TRAVERSAL

- A **traversal** visits the nodes of a tree in a systematic manner.
- In a **preorder traversal**, a node is visited before its descendants.
- Application: print a structured document.

Algorithm preOrder

Input: Tree T

1. $\text{preOrder}(T, T.\text{root}())$

Algorithm preOrder

Input: Tree T, Position p

1. $\text{visit-action}(p)$

2. **for each** Position $c \in T.\text{children}(p)$ **do**

3. $\text{preOrder}(T, c)$

Make Money Fast!

1. **Motivations**
 - 1.1 Greed
 - 1.2 Avidity

2. **Methods**
 - 2.1 Stock Fraud
 - 2.2 Ponzi Scheme
 - 2.3 Bank Robbery

3. **References**
EXERCISE: PREORDER TRAVERSAL

• In a **preorder traversal**, a node is visited before its descendants

• List the nodes of this tree in preorder traversal order.

Algorithm preOrder

Input: Tree \(T \)

1. `preOrder(T, T.root())`

Algorithm preOrder

Input: Tree \(T \), Position \(p \)

1. `visit-action(p)`

2. **for each** Position \(c \in T.children(p) \) **do**

3. `preOrder(T, c)`
In a postorder traversal, a node is visited after its descendants.

Application: compute space used by files in a directory and its subdirectories.

Algorithm postOrder

Input: Tree T

1. $postOrder(T, T.root())$

```pseudo
Algorithm postOrder
Input: Tree $T$, Position $p$
1. for each Position $c \in T.children(p)$ do
2. $postOrder(T, c)$
3. visit-action($p$)
```
EXERCISE: POSTORDER TRAVERSAL

- In a **postorder traversal**, a node is visited after its descendants.
- List the nodes of this tree in postorder traversal order.

Algorithm postOrder

Input: Tree T

1. `postOrder(T, T.root())`

Algorithm postOrder

Input: Tree T, Position p

1. **for each** Position $c \in T.\text{children}(p)$ **do**
2. `postOrder(T, c)`
3. `visit-action(p)`
A binary tree is a tree with the following properties:

- Each internal node has two children
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- If a child has only one child, the tree is improper
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

Applications:

- Arithmetic expressions
- Decision processes
- Searching
ARITHMETIC EXPRESSION TREE

• Binary tree associated with an arithmetic expression
 • Internal nodes: operators
 • Leaves: operands

• Example: arithmetic expression tree for the expression \((2 \times (a - 1) + (3 \times b))\)
DECISION TREE

• Binary tree associated with a decision process
 • Internal nodes: questions with yes/no answer
 • Leaves: decisions

• Example: dining decision

Want a fast meal?

How about coffee?
 • Yes
 • No

On expense account?
 • Yes
 • No

- Starbucks
- Spike’s
- Al Forno
- Café Paragon
PROPERTIES OF BINARY TREES

• Notation
 • \(n \) number of nodes
 • \(e \) number of external nodes
 • \(i \) number of internal nodes
 • \(h \) height

• Properties:
 • \(e = i + 1 \)
 • \(n = 2e - 1 \)
 • \(h \leq i \)
 • \(h \leq \frac{n-1}{2} \)
 • \(e \leq 2^h \)
 • \(h \geq \log_2 e \)
 • \(h \geq \log_2 (n + 1) - 1 \)
BINARY TREE ADT

• The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT

• Additional position methods:
 • Position left(p)
 • Position right(p)
 • Position sibling(p)

• The above methods return null when there is no left, right, or sibling of p, respectively

• Update methods may also be defined by data structures implementing the Binary Tree ADT
A LINKED STRUCTURE FOR BINARY TREES

- A node is represented by an object storing:
 - Element
 - Parent node
 - Left child node
 - Right child node
public class BinaryTreeNode<ElementType> implements Position<ElementType> {
 ElementType element;
 BinaryTreeNode<ElementType> parent, left, right;
 // ... Constructors, accessors, setters
}
ARRAY-BASED REPRESENTATION OF BINARY TREES

- Nodes are stored in an array A

- Node v is stored at $A[\text{rank}(V)]$
 - $\text{rank}(\text{root}) = 0$
 - if node is the left child of parent(node),
 $\text{rank}(\text{node}) = 2 \times \text{rank}(\text{parent}(\text{node})) + 1$
 - if node is the right child of parent(node),
 $\text{rank}(\text{node}) = 2 \times \text{rank}(\text{parent}(\text{node})) + 2$
INORDER TRAVERSAL

- In an **inorder traversal** a node is visited after its left subtree and before its right subtree.

- Application: draw a binary tree
 - \(x(v) = \) inorder rank of \(v \)
 - \(y(v) = \) depth of \(v \)

Algorithm **inOrder**

Input: Tree \(T \)

1. \(\text{inOrder}(T, T \cdot \text{root}()) \)

Algorithm **inOrder**

Input: Tree \(T \), Position \(p \)

1. if \(T \cdot \text{left}(p) \neq \text{null} \) then
2. \(\text{inOrder}(T, T \cdot \text{left}(p)) \)
3. \(\text{visit-action}(p) \)
4. if \(T \cdot \text{right}(p) \neq \text{null} \) then
5. \(\text{inOrder}(T, T \cdot \text{right}(p)) \)
EXERCISE: INORDER TRAVERSAL

• In an **inorder traversal** a node is visited after its left subtree and before its right subtree

• List the nodes of this tree in inorder traversal order.

Algorithm inOrder
Input: Tree T

1. $\text{inOrder}(T, T.\text{root}())$

Algorithm inOrder
Input: Tree T, Position p

1. if $T.\text{left}(p) \neq \text{null}$ then
2. $\text{inOrder}(T, T.\text{left}(p))$
3. $\text{visit-action}(p)$
4. if $T.\text{right}(p) \neq \text{null}$ then
5. $\text{inOrder}(T, T.\text{right}(p))$
EXERCISE: PREORDER & INORDER TRAVERSAL

• Draw a (single) binary tree T, such that
 • Each internal node of T stores a single character
 • A preorder traversal of T yields EXAMFUN
 • An inorder traversal of T yields MAFXUEN
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm printExpr
Input: Tree T
1. printExpr(T, T.root())

Algorithm printExpr
Input: Tree T, Position p
1. if T.left(p) ≠ null then
2. print "("
3. printExpr(T, T.left(p))
4. print(p.getElement())
5. if T.right(p) ≠ null then
6. printExpr(T, T.right(p))
7. print ")"

((2 × (a − 1)) + (3 × b))
APPLICATION
EVALUATE ARITHMETIC EXPRESSIONS

• Specialization of a postorder traversal
 • recursive method returning the value of a subtree
 • when visiting an internal node, combine the values of the subtrees

Algorithm evalExpr
Input: Tree T
1. evalExpr(T, T.root())

Algorithm evalExpr
Input: Tree T, Position p
1. if T.isExternal(p) then
2. return p.getElement()
3. x ← evalExpr(T, T.left(p))
4. y ← evalExpr(T, T.right(p))
5. v ← operator stored at v
6. return x • y
EXERCISE
ARITHMETIC EXPRESSIONS

• Draw an expression tree that has
 • Four leaves, storing the values 1, 5, 6, and 7
 • 3 internal nodes, storing operations +, -, *, /
 operators can be used more than once, but each internal node stores only one
 • The value of the root is 21
EULER TOUR TRAVERSAL

• Generic traversal of a binary tree

• Includes as special cases the preorder, postorder and inorder traversals

• Walk around the tree and visit each node three times:
 • on the left (preorder)
 • from below (inorder)
 • on the right (postorder)
EULER TOUR TRAVERSAL

Algorithm eulerTour

Input: Tree T

1. $\text{eulerTour}(T, T.\text{root}())$

Algorithm eulerTour

Input: Tree T, Position p

1. $\text{left-visit-action}(p)$
2. $\text{if } T.\text{left}(p) \neq \text{null} \text{ then}$
3. $\text{eulerTour}(T, T.\text{left}(p))$
4. $\text{bottom-visit-action}(p)$
5. $\text{if } T.\text{right}(p) \neq \text{null} \text{ then}$
6. $\text{eulerTour}(T, T.\text{right}(p))$
7. $\text{right-visit-action}(p)$
APPLICATION
PRINT ARITHMETIC EXPRESSIONS

• Specialization of an Euler Tour traversal
 • Left-visit: if node is internal, print “(”
 • Bottom-visit: print value or operator stored at node
 • Right-visit: if node is internal, print “)”

((2 \times (a - 1)) + (3 \times b))
INTERVIEW QUESTION 1

• Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.

INTERVIEW QUESTION 2

• Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).