CH 4
ALGORITHM ANALYSIS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
ANALYSIS OF ALGORITHMS (CH 4.2-4.3)
RUNNING TIME

• Most algorithms transform input objects into output objects.
• The running time of an algorithm typically grows with the input size.
• We focus on the worst case running time.
 • Easier to analyze
 • Crucial to applications such as games, finance, and robotics
LIMITATIONS OF EXPERIMENTS

• It is necessary to implement the algorithm, which may be difficult

• Results may not be indicative of the running time on other inputs not included in the experiment.

• In order to compare two algorithms, the same hardware and software environments must be used
THEORETICAL ANALYSIS

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
BIG-OH NOTATION

• Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$
 • $f(n)$ - might represent real computation time (measured time, if you will)
 • $g(n)$ - approximation function

• Example: $2n + 10$ is $O(n)$
 • $2n + 10 \leq cn$
 • $\frac{10}{c-2} \leq n$
 • Pick $c = 3$ and $n_0 = 10$

• To reduce: Strip constants, and take highest order terms
 • Constants do no matter because of limits as n goes to infinity
PRACTICE WITH BIG-OH

• Determine the big-oh approximation for the following functions:

1. 2^{100}
2. $4n^2 + 3n - 10$
3. $n \log n + 100n$
4. $3 \cdot 2^n + 400n^2$
5. $2^{\log n}$
6. $46n^2 + m$
7. $n\sqrt{n} + 23m \log n$
8. $\cos x$
• In comparison of algorithms, $f(n)$ is the real (measurable) time an algorithm takes to compute on hardware (tied to an implementation)
 • Again, hard to compare to other algorithms

• To determine big-oh approximation we count the maximum number of steps required by our algorithm
 • Unary and binary math operations, (e.g., +, -, *, /) and single memory accesses are $O(1)$
 • Loops or math operations like summation/product are $O(k)$ where k is the number of iterations performed

• Essentially, we don’t care about constants or exact times, we are reasoning about a general trend of n vs $f(n)$
EXAMPLE

ADDING TO AN ARRAY

- To add an entry e into array A at index i, we need to make room for it by shifting forward the $n - i$ entries $A[i], ..., A[n - 1]$

```
Algorithm Add
Input: Array $A$, index $i$, element $e$
1. for $k ← n$ to $i + 1$ do
3. $A[i] ← e$
4. $n ← n + 1$
```
EXAMPLE
ADDING TO AN ARRAY

• Best case
 • Add at the end of the array
 • One comparison, one copy, one increment
 • $3 = O(1)$, by removal of constants

• Worst case
 • Add at the beginning of the array
 • n comparisons, n copies, $2n$ increments
 • $4n = O(n)$, by removal of constants

• Average case?
EXERCISES

• Removing from an array
 • Best, average, worst cases
• Inserting at head or tail of linked list
• Removing head of tail of doubly-linked list
• Removing head of singly-linked list
• Removing tail of singly-linked list
Seven functions that often appear in algorithm analysis:

- Constant \(\approx 1 \)
- Logarithmic \(\approx \log n \)
- Linear \(\approx n \)
- Linearithmic \(\approx n \log n \)
- Quadratic \(\approx n^2 \)
- Cubic \(\approx n^3 \)
- Exponential \(\approx 2^n \)

In a log-log chart, the slope of the line corresponds to the growth rate.
BIG-OH ANALYSIS APPLIES TO TIME AND MEMORY

• How about recursion?
 • Each function call uses memory!

• Practice: How much memory does a recursive binary search use?
BIG-OMEGA AND BIG-THETA

- Big-oh describes an upper bound. Similar constructs exist for lower bounds (Big-omega $\Omega(g(n))$), "tight" bounds (Big-theta $\Theta(g(n))$), strict upper bounds (little-oh $o(g(n))$), and strict lower bounds (little-omega $\omega(g(n))$)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Omega(g(n))$ if there are positive constants c and n_0 such that $f(n) \geq cg(n)$ for $n \geq n_0$

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Theta(g(n))$ if there are positive constants c', c'', and n_0 such that $c'g(n) \leq f(n) \leq c''g(n)$ for $n \geq n_0$

- To prove: You must show upper and lower bounds hold. Because of this, in CS we often just say big-oh, but really big-theta is more accurate.
BIG-OH VS "WORST" CASE

• Despite common belief, big-oh does not always mean worst case
• Big-oh is an upper bound. So worst-case, average-case, and best case can each have a unique upper bound. It depends what we are describing.
• Similarly, big-omega does not mean best case and big-theta definitely does not mean average case
COMMON PROOF TECHNIQUES FOR THIS CLASS

• Direct proof – using knowledge of axioms and definitions
 • Used for determining theoretical complexity
 • *Loose* example
 • Copying takes one operation. My loop runs \(n \) times and performs \(n \) copies. Therefore the total runtime is \(O(n) \)

• Contradiction – assume the opposite and reach an impossibility
 • We will see this later in the course, in proving properties of structures
 • *Loose* example
 • Prove: if \(ab \) is odd, then \(a \) is odd and \(b \) is odd. Proof: Assume \(a \) is even, then \(a = 2j \) for some integer \(j \). Thus \(ab = 2(jb) \), implying \(ab \) is even. This is a contradiction to our original assumption, thus \(a \) cannot be even.

• Induction – not on a test or homework, only for my lectures

• Counterproof by example