ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
ANALYSIS OF ALGORITHMS (CH 4.2-4.3)
RUNTIME ANALYSIS
BIG-OH

• Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$
 • $f(n)$ is the real (measured) time

• We need to know how to determine $f(n)$, c, and n_0
 • This is all done through experiments
DETERMINING $f(n)$

- Vary the size of the input and then determine runtime using `System.nanoTime()`

```java
1. for(int n = 2; n < MAX; n*=2) {
2.   int r = max(10, MAX/n); //number of repetitions
3.   long start = System.nanoTime();
4.   for(int k = 0; k < r; ++k)
5.     executeFunction();
6.   long stop = System.nanoTime();
7.   double elapsed = (stop - start)/1.e9/r;
8. }
```
DETERMINE c AND n_0

• First plot $f(n)$ – time vs size

• Second plot $\frac{f(n)}{g(n)}$ or $\frac{\text{time}}{\text{theoretical time}}$ vs size

• Look for where the data levels off. This will be n_0

• Look for the largest value to the right of n_0, this will be c
TOGETHER – TIME LINEAR SEARCH

• We will download and modify Timing.java for this activity (see Programming Assignment 3)
WHY GO THROUGH THIS ANALYSIS?

• If two algorithms have the same theoretical analysis, we must compare them experimentally!
 • The algorithm with a smaller c value is more efficient

• Determining the n_0 informs us:
 • When the theoretical complexity begins holding true

• If you reach the memory limit of the machine, you will see "odd" effects…
ACTIVITY

• Determine big-oh constants for Arrays.sort();
• Theoretical complexity will be $O(n \log n)$