WHAT IS PERFORMANCE?

• Since the early days in computing, computer scientists have concerned themselves with improving hardware, software, visualizations, etc.

• Performance can mean many different things

• "The economy of human time is the next advantage of machinery in manufactures." – Charles Babbage
EXAMPLES OF PERFORMANCE

• Fewest computations
• Smaller memory usage
• Faster computations
• Improving accuracy of computations

• How we achieve these
 • Better algorithms
 • Better hardware
 • Better languages
WHY DO WE CARE?

• We want to solve real problems (large) in real time
BIG-OH COMPLEXITY

- We will focus our study of performance on time as a metric of performance.
- We can measure time experimentally like a stopwatch in our programs:

  ```java
  long start = System.nanoTime();
  //run algorithm
  long stop = System.nanoTime();
  double time = (stop - start)/1e9;
  ```

- We can measure time theoretically with big-oh analysis – an approximation technique for quantifying the time an algorithm takes.
BIG-OH COMPLEXITY

• A function $f(n)$ is $O(g(n))$ (pronounced "big-oh") if there exists constants c, and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$

 • $f(n)$ – real time taken for an algorithm. This is what we want to approximate

 • $g(n)$ – a function that "approximates" $f(n)$, more precisely it is an upper bound to $f(n)$

• We use this, as it describes how long an algorithm will take to compute as the problem size (n) increases

• To determine – count the operations
COMMON BIG-OH FUNCTIONS

• Logarithmic – $O(\log n)$

• Linear – $O(n)$
 • Example: searching for the minimum in an array. We must "look at" all n elements of an array

• Linearithmic – $O(n \log n)$

• Quadratic – $O(n^2)$
SHAMELESS PLUG FOR CMSC 221

• This class is not about how we come up with these equations, or how we design better algorithms. For continued information, continue on in CS coursework

• In this class, I want you to have an intuitive feel of what big-oh means through a few algorithms

• In this class, understand the algorithms I present, but I do not expect you to come up with it yourself
LET'S EXPLORE THESE CONCEPTS

• Case study on Searching
 • Linear Search
 • Binary Search

• Case study on Sorting
 • Bubble Sort
 • Selection Sort
 • Merge Sort
WAIT...HOW DO WE DO EXPERIMENTS?

- We vary the size of the data (usually by powers of two), so test on $n = 2^1, 2^2, ..., 2^d$

- Repeat each experiment numerous times to:
 - Get an accurate time for operations faster than 1 microsecond (usually one tick of the clock)
 - Average timing considering other tasks running on the computer

- Pseudocode

1. for $N \leftarrow 2^1 \ldots 2^d$ do
2. Setup before timing
3. $start \leftarrow \text{time()}$
4. for $k \leftarrow 0 \ldots \text{repeats}$ do
5. experiment()
6. $stop \leftarrow \text{time()}$
7. output($\frac{start-stop}{\text{repeats}}$)
CASE STUDY OF SEARCHING
LINEAR SEARCH

• Pseudocode

Input: Array arr, Key k
Output: true if arr contains k, false otherwise
1. for each $a \in arr$ do
2. if $a = k$ then
3. return true
4. return false

• Complexity?

• Linear – $O(n)$

• Reasoning – The search might have to visit each of the n elements contained in the array.

• Note – it doesn't matter if the first element is equal to the key, that is a special case. On average we must search $\frac{n}{2}$ elements. Additionally, we don't care about a specific size, we are interested in performance as the size tends to infinity.
CAN WE DO BETTER?

• Computer scientists always ask this kind of question, can we do better?
• Well in general...no, this is about the best we can do with searching.
• Computer scientists then ask a follow-up questions, can we do better in special cases?
• Yes! If we knew the input was sorted we could do much better.
BINARY SEARCH

- Pseudocode

Input: Sorted array arr, Key k

Output: true if arr contains k, false otherwise

1. low ← 0
2. high ← arr.length − 1
3. while lo ≤ hi do
4. mid ← \(\frac{\text{high} + \text{low}}{2} \)
5. if \(k < \text{arr[mid]} \) then
6. \(\text{high} ← \text{mid} − 1 \)
7. else if \(k > \text{arr[mid]} \) then
8. \(\text{low} ← \text{mid} + 1 \)
9. else
10. return true
11. return false
BINARY SEARCH

• How it works?
• Key is 7
BINARY SEARCH

• Complexity?
 • Logarithmic – $O(\log n)$
 • Reasoning – in each iteration of the loop, we eliminate half of the indices as possible cells to hold the key. The number of times you can repeatedly divide a number by 2 is the definition of a logarithm
 • Note – I am loose on the base of the logarithm. If you feel more comfortable with one, it will always be base 2. However, in big-oh complexity the base doesn't matter. See me after class if you would like a proof.
EXPERIMENT SEARCHING

• Download Search.java from the course website. It contains an experiment ready to go comparing the different searches. Let’s go through the file to ensure we understand each component.

• Run the file, open up the csv file in Microsoft Excel

• Make a line scatter plot of the size vs the time of the methods
 • Convert to a log-log plot to get a better picture of the data
CONCLUSION

• A smaller complexity drastically affects runtime
• $O(\log n)$ is much faster than $O(n)$
CASE STUDY OF SORTING
BUBBLE SORT

- **Pseudocode**

 Input: Array \(\text{arr} \)
 Output: Sorted array

1. for \(i \leftarrow 1 \ldots \text{arr}.\text{length} \) do
2. for \(j \leftarrow 0 \ldots \text{arr}.\text{length} - i \) do
3. if \(\text{arr}[j] > \text{arr}[j + 1] \) then
4. swap(\(\text{arr}, j, j + 1 \))

- **Complexity**

 - Quadratic – \(O(n^2) \)

 - **Reasoning** – There are \(n \) passes over the array, in each pass \(n \) elements are visited and possibly swapped. \(n \times n = n^2 \)
CAN WE DO BETTER?

• Computer scientists always ask this kind of question, *can we do better?*

• Identify the weakness here, bubble sort swaps too much

• Can we fix it?
SELECTION SORT

• Pseudocode

Input: Array `arr`

Output: Sorted array

1. for `i ← 0 ... arr.length − 2` do
2. `min ← i;`
3. for `j ← i ... arr.length − 1` do
4. if `arr[j] < arr[min]` then
5. `min ← j`
6. swap(arr, `i`, `min`)

• Complexity?

 • Quadratic – \(O(n^2)\)

 • Reasoning – In each iteration of the outer loop, we must find the minimum in the rest of the array, and we swap this minimum into place. Doing this \(n\) times, takes in total \(O(n^2)\) operations.
CAN WE DO BETTER?

• This was not satisfying, bubble sort and selection sort have the same complexity, even though selection sort is a much nicer idea (and performs better in practice, will see soon)

• Computer scientists always ask this kind of question, can we do better?

• Maybe we can try a radically different idea
MERGE SORT

• Split the array in half
• Sort each half recursively
• Merge the two back together
MERGE SORT

- **Pseudocode Sort**

Input: Array \(arr \)

Output: Sorted array

1. \(\text{if } \) \(arr \).length \(<\) 2 \(\text{ then return } \)
2. \(l, r \leftarrow \text{split} (arr) \)
3. MergeSort(\(l \))
4. MergeSort(\(r \))
5. \(arr \leftarrow \text{merge} (l, r) \)

- **Pseudocode Merge**

Input: Sorted arrays \(l \) and \(r \)

Output: Sorted array \(arr \)

1. \(arr \leftarrow \text{newArray} (l.\text{length}, r.\text{length}) \)
2. \(i \leftarrow 0; j \leftarrow 0; k \leftarrow 0 \)
3. \(\text{while } i < l.\text{length} \land j < r.\text{length} \text{ do} \)
4. \(\text{if } l[i] < r[j] \text{ then} \)
5. \(arr[k] \leftarrow l[i]; k \leftarrow k + 1; i \leftarrow i + 1 \)
6. \(\text{else} \)
7. \(arr[k] \leftarrow l[j]; k \leftarrow k + 1; j \leftarrow j + 1 \)
8. \(\text{while } i < l.\text{length} \text{ do} \)
9. \(arr[k] \leftarrow l[i]; k \leftarrow k + 1; i \leftarrow i + 1 \)
10. \(\text{while } j < r.\text{length} \text{ do} \)
11. \(arr[k] \leftarrow l[j]; k \leftarrow k + 1; j \leftarrow j + 1 \)
12. \(\text{return } arr \)
MERGE SORT

• Complexity?
 • Linearithmic – $O(n \log n)$
 • Reasoning – At each iteration of the recursive function we split the array in half and merge it back together. This is n work. Then we do this same amount of work at each level of the recursion tree. Since we split in half repeatedly, there are a logarithmic number of levels. Thus – n work on $\log n$ levels is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
<th>Cost for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$n/2$</td>
<td>n</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$\frac{n}{2^i}$</td>
<td>n</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$2^{\log n} = n$</td>
<td>$\frac{n}{2^{\log n}} = 1$</td>
<td>n</td>
</tr>
</tbody>
</table>
EXPERIMENT SORTING

- Download Sort.java from the course website. It contains an experiment ready to go comparing the different searches. Let's go through the file to ensure we understand each component.

- Run the file, open up the csv file in Microsoft Excel

- Make a line scatter plot of the size vs the time of the methods
 - Convert to a log-log plot to get a better picture of the data
CONCLUSION

• Two algorithms can have the same complexity, but different actual performance
 • We need to experiment on our data

• Smaller complexity will always beat an optimized higher complexity
 • However, note that this doesn't necessarily apply to small values of n
 • Lesson – choosing an appropriate algorithm requires understanding the size of your data
ALGORITHM SUMMARY

• Searching
 • Linear Search – linear time or $O(n)$
 • Binary Search – logarithmic time or $O(\log n)$

• Sorting
 • Bubble Sort – quadratic time or $O(n^2)$
 • Selection Sort – quadratic time or $O(n^2)$
 • Merge Sort – linearithmic time or $O(n \log n)$