PERFORMANCE

EFFICIENCY

SEARCHING

SORTING
WHAT IS PERFORMANCE?

• Since the early days in computing, computer scientists have concerned themselves with improving hardware, software, visualizations, etc

• Performance can mean many different things

• "The economy of human time is the next advantage of machinery in manufactures." – Charles Babbage
EXAMPLES OF PERFORMANCE

• Fewest computations
• Smaller memory usage
• Faster computations
• Improving accuracy of computations

• How we achieve these
 • Better algorithms
 • Better hardware
 • Better languages
WHY DO WE CARE?

• We want to solve real problems (large) in real time
BIG-OH COMPLEXITY

• We will focus our study of performance on time as a metric of performance.

• We can measure time experimentally like a stopwatch in our programs:
  ```python
  start = time.time()
  # run algorithm
  stop = time.time()
  time = stop - start
  ```

• We can measure time theoretically with big-oh analysis – an approximation technique for quantifying the time an algorithm takes.
BIG-OH COMPLEXITY

• A function $f(n)$ is $O(g(n))$ (pronounced "big-oh") if there exists constants c, and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$
 • $f(n)$ – real time taken for an algorithm. This is what we want to approximate
 • $g(n)$ – a function that "approximates" $f(n)$, more precisely it is an upper bound to $f(n)$

• We use this, as it describes how long an algorithm will take to compute as the problem size (n) increases

• To determine – count the operations
COMMON BIG-OH FUNCTIONS

- Logarithmic – $O(\log n)$
- Linear – $O(n)$
 - Example: searching for the minimum in an array. We must "look at" all n elements of an array
- Linearithmic – $O(n \log n)$
- Quadratic – $O(n^2)$
SHAMELESS PLUG FOR CMSC 221

• This class is not about how we come up with these equations, or how we design better algorithms. For continued information, continue on in CS coursework

• In this class, I want you to have an intuitive feel of what big-oh means through a few algorithms

• In this class, understand the algorithms I present, but I do not expect you to come up with it yourself
LETS EXPLORE THESE CONCEPTS

• Case study on Searching
 • Linear Search
 • Binary Search

• Case study on Sorting
 • Bubble Sort
 • Selection Sort
 • Advanced Sort
WAIT...HOW DO WE DO EXPERIMENTS?

• We vary the size of the data (usually by powers of two), so test on

\[n = 2^1, 2^2, ..., 2^d \]

• Repeat each experiment numerous times to:
 • Get an accurate time for operations faster than 1 microsecond (usually one tick of the clock)
 • Average timing considering other tasks running on the computer

• Pseudocode

1. for \(N \leftarrow 2^1 \ldots 2^d \) do
2. Setup before timing
3. \(start \leftarrow \text{time()} \)
4. for \(k \leftarrow 0 \ldots \text{repeats} \) do
5. experiment()
6. \(stop \leftarrow \text{time()} \)
7. output(\(\frac{\text{start}-\text{stop}}{\text{repeats}} \))
CASE STUDY OF SEARCHING
LINEAR SEARCH

• Pseudocode

Input: Array arr, Key k
Output: true if arr contains k, false otherwise

1. for each $a \in arr$ do
2. if $a = k$ then
3. return true
4. return false

• Complexity?

• Linear – $O(n)$
• Reasoning – The search might have to visit each of the n elements contained in the array.
• Note – it doesn't matter if the first element is equal to the key, that is a special case. On average we must search $\frac{n}{2}$ elements. Additionally, we don't care about a specific size, we are interested in performance as the size tends to infinity
CAN WE DO BETTER?

• Computer scientists always ask this kind of question, *can we do better*?

• Well in general...no, this is about the best we can do with searching.

• Computer scientists then ask a follow-up questions, *can we do better in special cases*?

• Yes! If we knew the input was sorted we could do much better.
BINARY SEARCH

• Pseudocode

Input: Sorted array arr, Key k
Output: true if arr contains k, false otherwise

1. low ← 0
2. high ← arr.length − 1
3. while lo ≤ hi do
4. mid ← \(\frac{\text{high} + \text{low}}{2}\)
5. if \(k < arr[mid]\) then
6. high ← mid − 1
7. else if \(k > arr[mid]\) then
8. low ← mid + 1
9. else
10. return true
11. return false
BINARY SEARCH

• How it works?

• Key is 7
BINARY SEARCH

• Complexity?
 • Logarithmic – $O(\log n)$
 • Reasoning – in each iteration of the loop, we eliminate half of the indices as possible cells to hold the key. The number of times you can repeatedly divide a number by 2 is the definition of a logarithm
 • Note – I am loose on the base of the logarithm. If you feel more comfortable with one, it will always be base 2. However, in big-oh complexity the base doesn't matter. See me after class if you would like a proof.
EXPERIMENT SEARCHING

• Download search.py from the course website. It contains an experiment ready to go comparing the different searches. Let's go through the file to ensure we understand each component.

• Run the file, open up the csv file in Microsoft Excel

• Make a line scatter plot of the size vs the time of the methods
 • Convert to a log-log plot to get a better picture of the data
CONCLUSION

• A smaller complexity drastically affects runtime

• $O(\log n)$ is much faster than $O(n)$
CASE STUDY OF SORTING
BUBBLE SORT

- **Pseudocode**

 Input: Array arr
 Output: Sorted array

 1. for $i \leftarrow 1 \ldots arr$.length do
 2. for $j \leftarrow 0 \ldots arr$.length $- i$ do
 3. if $arr[j] > arr[j + 1]$ then
 4. swap($arr, j, j + 1$)

- **Complexity**
 - Quadratic $- O(n^2)$
 - Reasoning – There are n passes over the array, in each pass n elements are visited and possibly swapped. $n \times n = n^2$
CAN WE DO BETTER?

- Computer scientists always ask this kind of question, *can we do better*?
- Identify the weakness here, bubble sort swaps too much
- Can we fix it?
SELECTION SORT

- Pseudocode

Input: Array `arr`
Output: Sorted array

1. for `i ← 0 ... arr.length − 2` do
2. `min ← i;`
3. for `j ← i ... arr.length − 1` do
4. if `arr[j] < arr[min]` then
5. `min ← j`
6. swap(`arr`, `i`, `min`)

- Complexity?

- Quadratic – $O(n^2)$

- Reasoning – In each iteration of the outer loop, we must find the minimum in the rest of the array, and we swap this minimum into place. Doing this n times, takes in total $O(n^2)$ operations.
Can we do better?

• This was not satisfying, bubble sort and selection sort have the same complexity, even though selection sort is a much nicer idea (and performs better in practice, will see soon)

• Computer scientists always ask this kind of question, can we do better?

• Many different ideas exist to perform better
 • Better for sorting is linearithmic – $O(n \log n)$, examples include Quick Sort, Merge Sort, etc.
Experimental Sorting

- Download `sort.py` from the course website. It contains an experiment ready to go comparing the different searches. Let's go through the file to ensure we understand each component.

- Run the file, open up the CSV file in Microsoft Excel.

- Make a line scatter plot of the size vs the time of the methods:
 - Convert to a log-log plot to get a better picture of the data.
CONCLUSION

• Two algorithms can have the same complexity, but different actual performance
 • We need to experiment on our data

• Smaller complexity will always beat an optimized higher complexity
 • However, note that this doesn't necessarily apply to small values of n
 • Lesson – choosing an appropriate algorithm requires understanding the size of your data
ALGORITHM SUMMARY

• Searching
 • Linear Search – linear time or $O(n)$
 • Binary Search – logarithmic time or $O(\log n)$

• Sorting
 • Bubble Sort – quadratic time or $O(n^2)$
 • Selection Sort – quadratic time or $O(n^2)$
 • Other Sorts – linearithmic time or $O(n \log n)$