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A–1 Consider the plane containing both the axis of the cone and two opposite vertices of the
cube’s bottom face. The cross section of the cone and the cube in this plane consists
of a rectangle of sides s and s

√
2 inscribed in an isosceles triangle of base 2 and height

3, where s is the side-length of the cube. (The s
√

2 side of the rectangle lies on the
base of the triangle.) Similar triangles yield s/3 = (1− s

√
2/2)/1, or s = (9

√
2− 6)/7.

A–2 First solution: to fix notation, let A be the area of region DEFG, and B be the
area of DEIH; further let C denote the area of sector ODE, which only depends
on the arc length of s. If [XY Z] denotes the area of triangle [XY Z], then we have
A = C + [OEG]− [ODF ] and B = C + [ODH]− [OEI]. But clearly [OEG] = [OEI]
and [ODF ] = [ODH], and so A+B = 2C.

Second solution: We may parametrize a point in s by any of x, y, or θ = tan−1(y/x).
Then A and B are just the integrals of y dx and x dy over the appropriate intervals;
thus A + B is the integral of x dy − y dx (minus because the limits of integration are
reversed). But dθ = x dy− y dx, and so A+B = ∆θ is precisely the radian measure of
s. (Of course, one can perfectly well do this problem by computing the two integrals
separately. But what’s the fun in that?)

A-3 If at least one of f(a), f ′(a), f ′′(a), or f ′′′(a) vanishes at some point a, then we are done.
Hence we may assume each of f(x), f ′(x), f ′′(x), and f ′′′(x) is either strictly positive
or strictly negative on the real line. By replacing f(x) by −f(x) if necessary, we may
assume f ′′(x) > 0; by replacing f(x) by f(−x) if necessary, we may assume f ′′′(x) > 0.
(Notice that these substitutions do not change the sign of f(x)f ′(x)f ′′(x)f ′′′(x).) Now
f ′′(x) > 0 implies that f ′(x) is increasing, and f ′′′(x) > 0 implies that f ′(x) is convex,
so that f ′(x + a) > f ′(x) + af ′′(x) for all x and a. By letting a increase in the latter
inequality, we see that f ′(x+a) must be positive for sufficiently large a; it follows that
f ′(x) > 0 for all x. Similarly, f ′(x) > 0 and f ′′(x) > 0 imply that f(x) > 0 for all x.
Therefore f(x)f ′(x)f ′′(x)f ′′′(x) > 0 for all x, and we are done.
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A-4 The number of digits in the decimal expansion of An is the Fibonacci number Fn,
where F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n > 2. It follows that the sequence
{An}, modulo 11, satisfies the recursion An = (−1)Fn−2An−1 + An−2. (Notice that the
recursion for An depends only on the value of Fn−2 modulo 2.) Using these recursions,
we find that A7 ≡ 0 and A8 ≡ 1 modulo 11, and that F7 ≡ 1 and F8 ≡ 1 modulo 2. It
follows that An ≡ An+6 (mod 11) for all n ≥ 1. We find that among A1, A2, A3, A4, A5,
and A6, only A1 vanishes modulo 11. Thus 11 divides An if and only if n = 6k + 1 for
some nonnegative integer k.

A–5 Define the sequence Di by the following greedy algorithm: let D1 be the disc of largest
radius (breaking ties arbitrarily), let D2 be the disc of largest radius not meeting D1,
let D3 be the disc of largest radius not meeting D1 or D2, and so on, up to some final
disc Dn. To see that E ⊆ ∪nj=13Dj, consider a point in E; if it lies in one of the Di, we
are done. Otherwise, it lies in a disc D of radius r, which meets one of the Di having
radius s ≥ r (this is the only reason a disc can be skipped in our algorithm). Thus the
centers lie at a distance t < s+ r, and so every point at distance less than r from the
center of D lies at distance at most r+ t < 3s from the center of the corresponding Di.

A–6 Recall the inequalities |AB|2 + |BC|2 ≥ 2|AB||BC| (AM-GM) and |AB||BC| ≥
2[ABC] (Law of Sines). Also recall that the area of a triangle with integer coordi-
nates is half an integer (if its vertices lie at (0, 0), (p, q), (r, s), the area is |ps− qr|/2),
and that if A and B have integer coordinates, then |AB|2 is an integer (Pythagoras).
Now observe that

8[ABC] ≤ |AB|2 + |BC|2 + 4[ABC] ≤ |AB|2 + |BC|2 + 2|AB||BC| < 8[ABC] + 1,

and that the first and second expressions are both integers. We conclude that 8[ABC] =
|AB|2 + |BC|2 + 4[ABC], and so |AB|2 + |BC|2 = 2|AB||BC| = 4[ABC]; that is, B is
a right angle and AB = BC, as desired.

B–1 Notice that

(x+ 1/x)6 − (x6 + 1/x6)− 2

(x+ 1/x)3 + (x3 + 1/x3)
= (x+ 1/x)3 − (x3 + 1/x3) = 3(x+ 1/x)

(difference of squares). The latter is easily seen (e.g., by AM-GM) to have minimum
value 6 (achieved at x = 1).

B–2 Consider a triangle as described by the problem; label its vertices A,B,C so that
A = (a, b), B lies on the x-axis, and C lies on the line y = x. Further let D = (a,−b)
be the reflection of A in the x-axis, and let E = (b, a) be the reflection of A in the
line y = x. Then AB = DB and AC = CE, and so the perimeter of ABC is

DB + BC + CE ≥ DE =
√

(a− b)2 + (a+ b)2 =
√

2a2 + 2b2. It is clear that this

lower bound can be achieved; just set B (resp. C) to be the intersection between the
segment DE and the x-axis (resp. line x = y); thus the minimum perimeter is in fact√

2a2 + 2b2.
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B–3 We use the well-known result that the surface area of the “sphere cap” {(x, y, z) | x2 +
y2 + z2 = 1, z ≥ z0} is simply 2π(1− z0). (This result is easily verified using calculus;
we omit the derivation here.) Now the desired surface area is just 2π minus the surface
areas of five identical halves of sphere caps; these caps, up to isometry, correspond to
z0 being the distance from the center of the pentagon to any of its sides, i.e., z0 = cos π

5
.

Thus the desired area is 2π − 5
2

(
2π(1− cos π

5
)
)

= 5π cos π
5
− 3π (i.e., B = π/2).

B–4 For convenience, define fm,n(i) = b i
m
c + b i

n
c, so that the given sum is S(m,n) =∑mn−1

i=0 (−1)fm,n(i). If m and n are both odd, then S(m,n) is the sum of an odd number
of ±1’s, and thus cannot be zero. Now consider the case where m and n have opposite
parity. Note that b i

m
c+bk− i+1

m
c = k−1 for all integers i, k,m. Thus b i

m
c+bmn−i−1

m
c =

n−1 and b i
n
c+bmn−i−1

n
c = m−1; this implies that fm,n(i)+fm,n(mn−i−1) = m+n−2

is odd, and so (−1)fm,n(i) = −(−1)fm,n(mn−i−1) for all i. It follows that S(m,n) = 0 if
m and n have opposite parity.

Now suppose that m = 2k and n = 2l are both even. Then b 2j
2m
c = b2j+1

2m
c for all j, so

S can be computed as twice the sum over only even indices:

S(2k, 2l) = 2
2kl−1∑
i=0

(−1)fk,l(i) = S(k, l)(1 + (−1)k+l).

Thus S(2k, 2l) vanishes if and only if S(k, l) vanishes (if 1 + (−1)k+l = 0, then k and l
have opposite parity and so S(k, l) also vanishes).

Piecing our various cases together, we easily deduce that S(m,n) = 0 if and only if the
highest powers of 2 dividing m and n are different.

B–5 Write N = (101998 − 1)/9. Then

√
N =

10999

3

√
1− 10−1998 =

10999

3
(1− 1

2
10−1998 + r),

where r < 10−2000. Now the digits after the decimal point of 10999/3 are given by
.3333 . . ., while the digits after the decimal point of 1

6
10−999 are given by .00000 . . . 1666666 . . ..

It follows that the first 1000 digits of
√
N are given by .33333 . . . 3331; in particular,

the thousandth digit is 1.

B–6 First solution: Write p(n) = n3 + an2 + bn+ c. Note that p(n) and p(n+ 2) have the
same parity, and recall that any perfect square is congruent to 0 or 1 (mod 4). Thus if
p(n) and p(n+2) are perfect squares, they are congruent mod 4. But p(n+2)−p(n) ≡
2n2 + 2b (mod 4), which is not divisible by 4 if n and b have opposite parity.

Second solution: We prove more generally that for any polynomial P (z) with integer
coefficients which is not a perfect square, there exists a positive integer n such that
P (n) is not a perfect square. Of course it suffices to assume P (z) has no repeated
factors, which is to say P (z) and its derivative P ′(z) are relatively prime.
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In particular, if we carry out the Euclidean algorithm on P (z) and P ′(z) without
dividing, we get an integer D (the discriminant of P ) such that the greatest common
divisor of P (n) and P ′(n) divides D for any n. Now there exist infinitely many primes
p such that p divides P (n) for some n: if there were only finitely many, say, p1, . . . , pk,
then for any n divisible by m = P (0)p1p2 · · · pk, we have P (n) ≡ P (0) (mod m),
that is, P (n)/P (0) is not divisible by p1, . . . , pk, so must be ±1, but then P takes
some value infinitely many times, contradiction. In particular, we can choose some
such p not dividing D, and choose n such that p divides P (n). Then P (n + kp) ≡
P (n)+kpP ′(n)(mod p) (write out the Taylor series of the left side); in particular, since
p does not divide P ′(n), we can find some k such that P (n+ kp) is divisible by p but
not by p2, and so is not a perfect square.

Third solution: (from David Rusin, David Savitt, and Richard Stanley independently)
Assume that n3 + an2 + bn+ c is a square for all n > 0. For sufficiently large n,

(n3/2 +
1

2
an1/2 − 1)2 < n3 + an2 + bn+ c < (n3/2 +

1

2
an1/2 + 1)2;

thus if n is a large even perfect square, we have n3 + an2 + bn+ c = (n3/2 + 1
2
an1/2)2.

We conclude this is an equality of polynomials, but the right-hand side is not a perfect
square for n an even non-square, contradiction. (The reader might try generalizing this
approach to arbitrary polynomials. A related argument, due to Greg Kuperberg: write√
n3 + an2 + bn+ c as n3/2 times a power series in 1/n and take two finite differences

to get an expression which tends to 0 as n→∞, contradiction.)

Note: in case n3 + an2 + bn+ c has no repeated factors, it is a square for only finitely
many n, by a theorem of Siegel; work of Baker gives an explicit (but large) bound on
such n. (I don’t know whether the graders will accept this as a solution, though.)
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