
Math 350
Spring, 2000

HOMEWORK #8

Do 50 points of the following problems (due 4/4/00).

1 Use the decoding scheme described by Jenny Key to decode the codeword25 pts.
122011022 (show all work). You should use the definition of the code
she gave in class.

The dot products with the 12 lines are 2; 0; 0; 1; 1; 0; 1; 1; 0; 1; 0;
1. From the description in class, position 0 uses lines l2, l5, l9, and l10,
and those have dot products 0; 1; 0; 1: the error is not in position 0.
Choosing the lines for each position, we get position 1 with 2; 1; 1; 1
(an error of 1 by majority vote in this position, so we will subtract 1
from the received word): position 2 with 2; 0; 0; 0 (no error): position
3 with 0; 0; 1; 1 (no error): position 4 with 2; 1; 1; 1 (an error of 1 by
majority vote in this position, so we will subtract 1 from the received
word): position 5 with 0; 0; 1; 1 (no error): position 6 with 0; 1; 0; 1
(no error): position 7 with 0; 1; 1; 0 (no error): and position 8 with 0; 1;
1; 0 (no error). Thus, we correct 122011022 by subtracting 010010000
to get the corrected 112001022. Note that this word is l10 − l11.

1



2 Describe how you would use the affine plane over GF (p) to the general? 50 pts.
majority logic decoding algorithm similar to Jenny Key’s description.
What properties of the affine plane are useful here?

If we take any affine plane, and form the incidence matrix for the lines
of the affine plane, we have the property that any pair of lines will
intersect in a unique point. That point will be one of the positions of
the code, so if we take all of the lines that have a 1 in position k, the
rows for those lines will have the property that every other position
has exactly one 1 in a column (if there were two, then two of the lines
would meet in 2 positions. If there weren’t any, then there would be
a pair of points that did not determine a line). Since each point is on
exactly p + 1 lines (from work we did earlier on affine planes), we will
have p + 1 votes in each position. If the code is the orthogonal to the
incidence matrix for the affine plane, then we should be able to correct
up to p+1

2
errors in any positions (this code is over Zp). This is true

because if an error has been made in position i, then there are p−1
2

errors to spread across other positions. This will affect at most p−1
2

of
the “votes”, so the p+3

2
other “votes” will give the correct magnitude

of the error in that position. If there is not an error in position i, then
at most p+1

2
of the “votes” will be nonzero, leaving at least p+1

2
votes

for 0. Any time there are that many zeros, we assume that there was
not an error in that position. Thus, this allows us to correct at least
p+1

2
errors in any position.

3 Let 1 + x + x4 generate the binary Hamming code of length 15. Use the25 pts.
decoding algorithm discussed in class to decode x+x3+x5+x7+x9+x11.

If w(x) = x+x3 +x5 +x7 +x9 +x11, then s(x) = 1+x. This has weight
2, so we need to check the si(x): s0(x) = x+ 1(= x4); s1(x) = x2 +x(=
x5); . . . ; si(x) = · · · (= x4+i); . . .. Since x15 = 1 in this case, we get that
s11(x) = 1, so e(x) = x15−11s11(x) = x4. Thus, the decoded word is
x+ x3 + x4 + x5 + x7 + x9 + x11 = (x+ x2 + x4 + x5 + x7)(1 + x+ x4).

2



4 Use the MacWilliams identities to find the weight enumerator for the or-25 pts.
thogonal code to the first order Reed Muller code of length 16 (which
has 30 codewords of weight 8, 1 codeword of weight 16, and 1 codeword
of weight 0).

WC(z) = 1 + 30z8 + z16: by the MacWilliams identities, WC⊥ = 1
25 (1 +

z)16(1+30 (1−z)8

(1+z)8 + (1−z)16

(1+z)16 ). Simplifying this, we get WC⊥ = 1
25 ((1+z)16+

30(1−z2)8+(1−z)16) = 1
32

(32+4480 z4+14336 z6+27840 z8+14336 z10+
4480 z12 + 32 z16) = 1 + 140z4 + 448z6 + 870z8 + 448z10 + 140z12 +
z16. This is the weight enumerator for the third order Reed Muller
code of length 16. (NOTE: I used Mathematica, and in particular the
command Expand, to help me with this answer.)

5 Use the MacWilliams identities to find the weight enumerator for the or-25 pts.
thogonal code to the Nordstrom-Robinson code (which has 30 words
of weight 8, 112 words of weight 6, 112 words of weight 10, 1 word of
weight 16 and 1 word of weight 0).

WC(z) = 1+112z6 +30z8 +112z10 +z16: by the MacWilliams identities,
WC⊥ = 1

28 (1 + z)16(1 + 112(1−z
1+z

)6 + 30(1−z
1+z

)8 + 112(1−z
1+z

)10 + (1−z
1+z

)16).

Simplifying, we get WC⊥ = 1
256

(1+112(1−z)6(1+z)10 +30(1−z)8(1+
z)8 + 112(1− z)10(1 + z)6 + (1− z)16) = 1 + 112z6 + 30z8 + 112z10 + z16.
Note that C⊥ has the same weight enumerator as C. Even though the
code is not linear over Z2, it is “formally self-dual”. Jamie will explain
to us in her project why this works!

3


