TEST 3

Davis	Name:
M212	Pledge:

Show all work; unjustified answers may receive less than full credit.

(20pts.) **1.** Show that the sum $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$ if |r| < 1. What happens if |r| > 1?

The partial sum for this series is $S_n = a + ar + \ldots + ar^n$; when we multiply that by r and subtract the two equations, we get $(1-r)S_n = a - ar^{n+1}$. Thus, $S_n = \frac{a(1-r^{n+1})}{1-r}$. When $n \to \infty$, the term $r^{n+1} \to 0$ as long as |r| < 1, which implies that $S_n \to \frac{a}{1-r}$ in that case. When |r| > 1, the partial sums diverge.

(20pts.)2. For the following series, determine whether the series converges or diverges. If the series converges, find an upper bound on its limit. Justify your answers!

a. $\sum_{k=2}^{\infty} \frac{k}{k^{3/2}-1}$

Compare this series to $\sum_{k=2}^{\infty} \frac{1}{k^{1/2}}$: this series is smaller and diverges, so the series $\sum_{k=2}^{\infty} \frac{k}{k^{3/2}-1}$ must also diverge.

b. $\Sigma_{k=0}^{\infty} \frac{k!}{2^k}$

The ratio test yields $\lim_{k\to\infty} \frac{\frac{(k+1)!}{2^{k+1}}}{\frac{k!}{2^k}} = \lim_{k\to\infty} \frac{k+1}{2} = \infty$. Since this is bigger than 1, the series diverges.

c. $\Sigma_{k=2}^{\infty} \frac{1}{k^4+1}$

The comparison test with $\sum_{k=2}^{\infty} \frac{1}{k^4}$ implies convergence. We can use $\int_1^{\infty} \frac{dx}{x^4} = \frac{1}{3}$ as an upper bound (if you do the integral from 2, you will need to use a fudge factor).

- (20pts.) **3.** Find the interval of convergence (endpoint behavior too!) for:
 - a. $\sum_{n=1}^{\infty} \frac{x^n}{5^n}$

The ratio test yields $|\frac{x}{5}| < 1$, or -5 < x < 5. The endpoints both diverge (one is $1+1+1+\cdots$ and the other is $1-1+1-1+\cdots$).

b. $\sum_{n=1}^{\infty} \frac{(x+1)^n}{n}$.

The ratio test yields $\lim_{n\to\infty} |x+1| \frac{n}{n+1} = |x+1|$. To converge, we must have |x+1| < 1, which implies that -1 < x+1 < 1, or -2 < x < 0. The endpoint x = -2 converges since it is the alternating harmonic series whereas the endpoint x = 0 diverges since it is the harmonic series.

(20pts.) **4. a.** Use the power series for e^x to get a power series for $e^{-x^2/2}$. What is the interval of convergence for the power series for $e^{-x^2/2}$?

Since $e^x = 1 + x + x^2/2! + x^3/3! + \dots$, we see that $e^{-x^2/2} = 1 - \frac{x^2}{2} + \frac{x^4}{4 \cdot 2!} - \frac{x^6}{8 \cdot 3!} + \cdots$. The interval of convergence is the same as the original, namely $(-\infty, \infty)$.

b. Use the answer from part a. to find a series that computes the area under the curve $e^{-x^2/2}$ on the interval [0,1].

Integrate the power series to get $x - \frac{x^3}{3\cdot 2} + \frac{x^5}{5\cdot 4\cdot 2!} - \frac{x^7}{7\cdot 8\cdot 3!} + \cdots$ and then plug in the limits of integration to get $1 - \frac{1}{3\cdot 2} + \frac{1}{5\cdot 4\cdot 2!} - \frac{1}{7\cdot 8\cdot 3!} + \cdots$.

c. Use the answer to part b. to find an approximation to the area under the curve $e^{-x^2/2}$ from [0,1] within .1. Justify your answer!

The answer in part b. is an alternating series, so the error in a partial sum is no worse than the next term in the series. The third term is $\frac{1}{40}$, so the estimate $1 - \frac{1}{6} = \frac{5}{6}$ is within the appropriate distance of the true answer.

(20pts.) 5. Compute the first four nonzero terms of the MacLaurin series for the function $f(x) = (1-x)^{\frac{2}{3}}$. Use the third degree MacLaurin polynomial to approximate f(1). How much error do you have in that approximation?

The first four nonzero terms are $1 - \frac{2}{3}x - \frac{2}{9 \cdot 2!}x^2 - \frac{8}{27 \cdot 3!}x^3$. The approximation for f(1) using that polynomial is $1 - \frac{2}{3} - \frac{1}{9} - \frac{4}{81} = \frac{14}{81}$. Since the true answer is 0, we could use the $\frac{14}{81}$ as the error estimate, but you could also use $\frac{K_4 x^4}{4!}$. I was accepting lots of estimates for K_4 : K_4 actually gets infinitely big when you get close to 1, so there is no actual upper bound on that value.

Have a GREAT Thanksgiving!