Quiz	2	

Davis	Name:
M212	Pledge:

(8pts.) 1. Given the picture of y = f(x), estimate the area under the curve from 1 to 4, subdividing the interval into 3 regions, using:

In each case indicate whether the estimate is an overestimate or an underestimate and explain why. In this problem, the function I graphed was $\ln(x)$ (you didn't need to know that). The function values are approximately the following: f(1) = 0; f(1.5) = .4; f(2) = .7; f(2.5) = .9; f(3) = 1.1; f(3.5) = 1.25; f(4) = 1.4. Using these values (and the fact that the width of each of the rectangles or trapezoids is 1), we get $L_3 = (0+.7+1.1) = 1.8$; $R_3 = .7+1.1+1.4 = 3.2$; $T_3 = \frac{L_3+R_3}{2} = 2.5$; $M_3 = .4+.9+1.25 = 2.55$. The sum L_3 is an underestimate since the function is increasing, and R_3 is an overestimate for the same reason; T_3 is an underestimate since the function is concave down, and M_3 is an overestimate for the same reason.

(6pts.) 2. Suppose that f' is the function shown in the graph below, and suppose that F is an antiderivative of f satisfying f(2) = 0. Find a value of n such that $|L_n - \int_2^4 F(x) dx| \le .01$.

This is problem 17c from section 7.2. In order to get this, you need an estimate for K_1 , the maximum value for the derivative of F, which is f. Since f is a decreasing function on the interval from 2 to 4 and f(2) = 0, the maximum value is going to be |f(4)|. We can estimate f(4) by using the equation $\int_2^4 f'(x) dx = f(4) - f(2) = f(4)$. We don't have an exact value for this integral, but it is certainly smaller than 10 since the rectangle of height 10 (going down to -5) will contain the area under the curve from 2 to 4. Thus, I would use $K_1 = 10$. From there, it is a matter of solving the equation $\frac{K_1(b-a)^2}{2n} \leq .01$, which implies $\frac{10(4-2)^2}{2(.01)} \leq n$, so n should be at least 2000. There are lots of other ways to do this, but they should all focus on ways to estimate K_1 .

(6pts.)

3. Explain the formula $|I - L_n| \leq \frac{K_1(b-a)^2}{2n}$ (hint: a good picture will go a long way in this problem!). I am looking for a picture something like the picture on p. 433 of the book. I want to see a picture

I am looking for a picture something like the picture on p. 433 of the book. I want to see a picture of that together with an explanation of why are we using K_1 : that boils down to the explanation that the error is contained within the triangle in the picture.