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Abstract

We investigated partial difference set constructions for the parameter fam-
ily (23e, 22e +2e +1, 2e +4, 2e +2). After working through the simple construc-
tion examples, the Fiedler-Klin construction, and the DeLange construction,
we attempted to extend these methods to create new partial difference sets.
Along with these constructions, we tried some original ideas involving vector
spaces and embedding partial difference sets into larger groups.

1 Introduction

The most important question in the area of partial difference sets (PDS) is the fol-
lowing: given a parameter family that survives known nonexistence results, can we
find a group that supports a PDS with these same parameters. The second most im-
portant question is related: given a parameter family with known PS constructions,
can we find other groups supporting a PDS with the same parameters. We examined
both of these questions for the parameter family (23e, 22e + 2e + 1, 2e + 4, 2e + 2).
Trivial examples exist in the e = 1 and e = 2 cases. The e = 3 case presented
by Fiedler and Klin involves constructing permutation groups and using them to
build a partial difference set. The e = 4 case presented by DeLange uses cyclotomic
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classes in finite fields. Initially, we inspected ways to expand the known partial
difference sets to larger values of e. Then, we spent a majority of our time trying to
build structural relationships between the different examples in the hopes of finding
a pattern that could be used to build larger partial difference sets. In most cases,
we were working with finding these partial difference sets in the elementary abelian
groups of appropriate order. In order to better understand our work, we provided
a preliminary section explaining difference sets, partial difference sets, strongly reg-
ular graphs, character theory, finite fields, Galois rings, wreath products, and a list
of families of partial difference sets. The third section outlines the known construc-
tions for the parameter family of interest. The fourth section describes out attempts
to understand these examples and possibly extend their constructions to build new
examples for values of e > 4.

2 Preliminaries

A difference set D is a subset of a group G with the property that every nonidentity
element of G can be represented exactly λ times as a difference between the elements
of D. Difference sets are described by three parameters (v, k, λ) where v = |G|,
k = |D|, and λ is as described above.

• Example: (7,3,1)
Let G = Z7 and consider the subset D = {1, 2, 4}. We claim this is a difference
set. To show this, we will explicitly show all non-zero differences.
1− 2 = 6 2− 1 = 1 4− 1 = 3
1− 4 = 4 2− 4 = 5 4− 2 = 2
As you can see, each non-zero element of Z7 appears exactly once, making this
a (7, 3, 1) difference set.

To construct this difference set, we simply take all the quadratic residues of each
element in Z7. This is example is associated to two families of difference sets. One

is the Singer Family of Difference Sets, ( qd+1−1
q−1

, qd−1
q−1

, qd−1−1
q−1

) where q is prime power
and d ≥ 2, with parameters q = 2 and d = 2. The other is the Paley Family of
Difference Sets, (q, q−1

2
, q−3

4
) where q ≡ 3(mod4) and q is a prime power, with q = 7.

• Examples: (16,6,2)
G = Z2

4 D1 = {(0, 0), (0, 2), (1, 0), (3, 0), (0, 1), (2, 3)}
G = Z4 × Z2

2 D2 = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0), (2, 0, 0), (3, 1, 1)}
G = Z4

2 D3 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1)}
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Here we have given three difference examples of difference sets in non-isomorphic
groups of order 16. These are examples of the McFarland parameter family, (qd+1(1+
qd+1−1

q−1
), qd( qd+1−1

q−1
), qd( qd−1

q−1
)). These difference sets follow the construction in a group

E × K where E = EA(qd+1) and K is any group of order 1 + qd+1−1
q−1

. In the first

example, D1, q = 4 and d = 0 making E = Z4 and |K| = 4. The third example, D3,
has q = 2 and d = 1 making E = Z2×Z2 and |K| = 4. Finally, the second example
is somewhat special because it can be viewed as having parameters q = 4, d = 0
making E = Z4 and K = Z2 × Z2 or q = 2, d = 1 making E = Z2 × Z2 and K = Z4

related to it.

There are two useful observations of difference sets
(a) translates of difference sets are difference sets.
(b) complements of difference sets are difference sets.

Proof: (a) Let D be a difference set in group G. Written additively, consider
D′ = x + D where x ∈ G. Let di, dj ∈ D, x + di, x + dj ∈ D′,∀di, dj, i 6= j. Since
di + x − (dj + x) = di − dj = g ∈ G, this implies D′ will have the same number of
differences between the elements of D, making D′ a partial difference set with the
same parameters as D.

Proof: (b) Let D be a (v, k, λ) difference set in a group G. There are v ways
to represent any g ∈ G as g = x − y, x, y ∈ G. Of these, k have x ∈ D, k have
y ∈ D, and λ have both x and y in D. This leaves exactly v − 2k + λ differences
which involve no elements of D. Thus the complement of D is a (v, v−k, v−2k+λ)
difference set.

Lemma 2.1 The parameters of a (v, k, λ) difference set satisfy k(k−1) = (v−1)λ.

Proof: Let D be a (v, k, λ) difference set. There are k(k − 1) differences that are
not equal to the identity. Also, there are v− 1 non-identity elements, each of which
is the result of λ differences.

Difference sets can be used to construct symmetric designs. A symmetric (v, k, λ)
design is a collection of v points and v blocks; each block containing k points and
each point is on k blocks, and each pair of points are on exactly λ blocks, while each
pair of blocks intersect in λ points.

To get a design from a (v, k, λ) difference set D in a group G, take all the
translates of D as the blocks, and the elements of G as the points. It is easy to see
that there are v points and v blocks because |G| = v and there are v translations
possible of D. Since |D| = k, each block contains k points. A point p is on a block
x + D if and only if there is a d ∈ D such that x + d = p, or x = p− d. There are k
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values for d so each point is on k blocks. It remains to show that each pair of points
has λ common blocks, and each pair of blocks shares λ points. Two points p1 and
p2 are in the same block x + D if there exists d1, d2 ∈ D such that p1 = x + d1 and
p2 = x + d2. Combining these expressions, we get p1 − p2 = d1 − d2 which has λ
solutions, so p1 and p2 are in λ blocks. Two blocks x + D and y + D have a point
in common if there are d1 and d2 such that x + d1 = y + d2. This can be written
x− y = d1 − d2 which has λ solutions, so x + D and y + D have λ common points.
We can then conclude that this construction gives us a (v, k, λ) design.

Difference sets can also be associated with binary sequences. For example, we
can take a (v, k, λ) difference set in Zv, and place a −1 in every position that contains
an element of the difference set and a +1 everywhere else.
Now we will consider the periodic autocorrelation of this sequence. For any sequence
a0a1 . . . an−1, the periodic autocorrelation Au is defined as

Au =
n−1∑
i=0

ai · ai+u(modn).

It is easy to see that for a binary sequence of length n with elements ±1, A0 =∑n−1
i=0 aiai =

∑n−1
0 1 = n.

• Example: D = {1, 2, 4} ⊂ Z7

The sequence associated with D is +1−1−1+1−1+1+1. For simplicity, we will
represent this +−−+−++. We will now take one of the periodic autocorrelations.
A1 = a0a1 +a1a2 +a2a3 +a3a4 +a4a5 +a5a6 +a6a0

= (+−) +(−−) +(−+) +(+−) +(−+) +(++) +(++)
= −1 +1 −1 −1 −1 +1 +1 = -1

In fact, for sequences associated with a difference set, all periodic autocorrela-
tions except A0 will have the same value. Each cyclically shifted sequence is the
sequence associated a translate of the difference set. We know that any two trans-
lates of a difference set have λ elements in common. This means there will be λ copies
of (−−) = +1 in the sum. The complement is also a difference set, so there will
be some λ′ copies of (++) = +1 in the sum. The rest of the sum will be made of −1.

This can be extended to groups other than Zv. We can associate a difference
set in a group Zn × Zn to a 2-dimensional array ai,j of ±1, again with −1 in the
positions corresponding to the elements of the difference set. We can define the
periodic autocorrelation A(u1,u2) = ai,jai+u1(mod4),j+u2(mod4).
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•Example: (16, 6, 2) difference set in Z4×Z4 D={(0,0),(0,2),(1,0),(3,0),(0,1),(2,3)}
ai,j = −−−+ ai+2(mod4),j+1(mod4) = + +−+

−+ ++ + + +−
+ + +− −−+−
−+ ++ + + +−

It can be quickly verified that there are λ = 2 positions where both these arrays
contain a −1. There are six more positions where both contain a +1 for a total of
eight positions where they are the same. This means A(2,1) = +8−8 = 0. As before,
A(u1,u2) will be the same for all (u1, u2) 6= (0, 0).

This type of array is actually used in electronics manufacturing for precision
placement. A moving piece has a sheet with holes in places corresponding to our
−1. The surface over which the piece is moving is painted black with white dots
also corresponding to the −1, so if the piece is positioned correctly all the dots will
line up with the holes. A detector on the moving piece determines how much white
it can see. If it is not in the correct place, the autocorrelation will be 0 and it will
see two white dots. If it is in the right place, it will detect six white dots. This is a
significant jump, so it is easy to determine whether it is in the right place.

A partial difference set D is a subset of a group G with the property that every
nonidentity element of D can be represented λ times as a difference between a pair
of elements in D while every nonidentity element of G \ D can be represented µ
times as a difference between a pair of elements in D. Likewise, partial difference
sets have parameters associated with them, (v, k, λ, µ), where v = |G|, k = |D|, and
λ and µ are as described above.

• Example: (5,2,0,1)
Let G = Z5 and take the subset D = {1, 4}. Doing all non-zero subtractions
explicitly,
1− 4 = 2 4− 1 = 3
we see that each member of D does not appear and each nonzero member of
the complement of D appears exactly once. This makes the set a 5, 2, 0, 1)
partial difference set.

The construction of this set is similar to one of our difference set examples. The
partial difference set D contains all the quadratic residues of Z5. Similarly, it is
associated with a parameter family of partial difference sets.

Lemma 2.2 The parameters describing (v, k, λ, µ) partial difference set satisfy
(a) k(k − 1) = (k − 1)λ + (v − k)µ if the identity element of G is in D and
(b) k(k − 1) = kλ + (v − k − 1)µ if the identity element of G is in G \D.
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Proof: Let D be a (v, k, λ, µ) partial difference set in G. There are k(k − 1) differ-
ences that do not equal the identity of G. If the identity of G is in D, then there are
k−1 non-identity elements in D that occur as differences λ times and v−k elements
in G\D that occur as differences µ times. If the identity of G in in G\D, then there
are k elements in D that occur as differences λ times and v − k − 1 non-identity
elements in G \D that occur as differences µ times.

Partial difference sets can be used to construct strongly regular graphs. A con-
nected graph with v vertices is strongly regular if
(a) each vertex has exactly k edges going into it; and
(b) given v1, v2, the number of vertices adjacent to both v1 and v2 is λ if v1 is
adjacent to v2 and µ if v1 is not adjacent to v2.

Suppose D is a (v, k, λ, µ) partial difference set in G; let the elements of G be
vertices of a graph, and join two vertices v1, v2 with an edge if v1 − v2 ∈ D. For all
vertices v, they will have k edges going into them because each will be connected to
v1 + d for all d ∈ D. If we consider two vertices v1, v2 connected to a vertex x, then
x− v1 ∈ D and x− v2 ∈ D. By taking (x− v1)− (x− v2) = v1− v2, this shows that
there must be λ values for x if v1 − v2 ∈ D and µ values for x if v1 − v2 ∈ G \D.

• Strongly Regular Graph example:()

There are a few ways to verify whether a set is a difference set or a partial
difference set. Brute force methods are inefficient in both time and storage space
when implemented in a computer program. Consequently, we need a faster way to
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determine this. Character Theory provides one way of making the process more
efficient.

Definition 2.3 A character χ is a homomorphism from a group G into (C,×),
the complex numbers under multiplication.
The character χ0 : G → C such that χ0(g) = 1 ∀g ∈ G is called the principal
character.

Lemma 2.4 If χ is a non-principal character on a group G then χ(G) =
∑

g∈G χ(g) =
0.

Proof: If χ is non-principal on G then ∃g′ ∈ G such that χ(g′) 6= 1. We now
compute χ(g′ + G) in two ways assuming G is an additive group.

χ(g′ + G) =
∑
g∈G

χ(g′ + g) =
∑
g∈G

χ(g′)χ(g) = χ(g′)
∑
g∈G

χ(g) = χ(g′)χ(G)

χ(g′ + G) =
∑

g′′∈G

χ(g′′) = χ(G)

This shows that χ(g′)χ(G) = χ(G) and since χ(g′) 6= 1,χ(G) = 0.

Definition 2.5 For a group G, define a group ring Z[G] as the set of formal sums∑
g∈G

agg where ag ∈ Z.

For D ⊆ G we define an element of the group ring D =
∑
g∈G

agg where ag = 1 if g ∈ D

and ag = 0 otherwise. Also define D(−1) =
∑
g∈G

agg
−1. Here we give an example of

apply a (7, 3, 1) difference set D = {1, 2, 4} to the group ring setting.

Example: G = Z7 = 〈x|x7 = 1〉 D = {x, x2, x4}
Z[G] = {a0 + a1x + a2x

2 + a3x
3 + a4x

5 + a5x
5 + a6x

6|ai ∈ Z}
D = x + x2 + x4, D(−1) = x6 + x5 + x2

Note that the product DD(−1) is the formal sum of all the “differences” of D.
It follows that if D is a difference set in a multiplicative group G, then DD(−1) =
k + λ(G \ {1}) = (k − λ) + λG. If we are dealing with a partial difference set,
we must consider whether the identity element is in the set D or not. If 1 ∈ D,
DD(−1) = k +λ(D \{1})+µ(G\D) = (k−λ)+λD +µ(G\D). Similarly, if 1 /∈ D,
DD(−1) = (k − µ) + λD + µ(G \ D). For a partial difference set every difference
a− b = c has a corresponding b−a = −c so c and −c are made by the same number
of differences, so both or neither must be in D. This means D = D(−1) for partial
difference sets.
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We can extend the homomorphism to χ : Z[G] → C. This is defined by
χ(

∑
agg) =

∑
agχ(g) This new mapping can be applied to the group ring equations

above. For a difference set,
χ(DD(−1)) = χ((k − λ){1}+ λG)

= k − λ + λχ(G)

Since χ is a homomorphism, χ(D(−1)) = χ(D). We can now write |χ(D)|2 =
χ(D)χ(D) = k−λ+λχ(G). That is, for all non-principal characters,|χ(D)|2 = k−λ.
We now have a way to check whether a set is a difference set without taking all the
possible differences. If |χ(D)| 6= √

k − λ for any χ 6= χ0, D is not a difference set.
Conversely, if |χ(D)| = √

k − λ for all χ 6= χ0 then D is a difference set.
We can find a similar equation for partial difference sets. For D containing the

identity,
χ(DD(−1)) = χ((k − λ){1}+ λD + µ(G \D))

= k − λ + (λ− µ)χ(D) + µχ(G)

Since we know D = D(−1), χ(D)2 = (λ−µ)χ(D)+(k−λ) for all χ 6= χ0. This is

simply a quadratic equation in χ(D). Solving, we get χ(D) =
(λ−µ)±

√
(µ−λ)2−4(λ−k)

2
.

Similarly, if the identity is not in D,χ(D) =
(λ−µ)±

√
(µ−λ)2−4(µ−k)

2
. Thus χ(D) can

take only two distinct values if D is a partial difference set. It is also true that if the
character values for a set takes exactly two different values, then the set is a partial
difference set.

This result can be used to show that complements of partial difference sets are
partial difference sets. For any character which is non-principal on G, 0 = χ(G) =
χ(D) + χ(G \ D). This means χ(D) = −χ(G \ D) so the character sums for the
complement take exactly two values as well, and is thus a partial difference set.

Once we have a way to check whether a subset of a group is a difference set or
a partial difference set, we must have methods that help us construct these subsets.
In all cases, we use algebraic structures to find difference sets and partial difference
sets. Permutation groups, finite fields, and Galois rings are some of these helpful
structures.

A field F is a set with two binary operations, + and ×. F is an abelian group
over + and F∗ is an abelian group over ×. F is distributive on the left and right,
that is a(b + c) = ab + ac and (a + b)c = ac + bc. Finite fields exist only with orders
that are powers of primes.
• Example: Zp where p is a prime is a field with normal + and × mod p.

Finite fields of order pn are constructed by Fpn ∼= Zp[x]/〈g(x)〉 where 〈g(x)〉 is
the ideal generated by g(x), a degree n polynomial that is irreducible in Zp[x]. The
additive group is isomorphic to Zn

p and the multiplicative group is cyclic of order
pn − 1. For ease of notation, an element f(x) + 〈g(x)〉 ∈ Zp[x]/〈g(x)〉 is written as
f(x).
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• Example: F16

Z2[x]/〈x4 + x + 1〉
x = x x2 = x2

x3 = x3 x4 = x + 1
x5 = x2 + x x6 = x3 + x2

x7 = x3 + x + 1 x8 = x2 + 1
x9 = x3 + x x10 = x2 + x + 1
x11 = x3 + x2 + x x12 = x3 + x2 + x + 1
x13 = x3 + x2 + 1 x14 = x3 + 1
x15 = 1 0

In this example we have provided the multiplicative and additive notation for
each element in F16. This is easily done by reducing all x4 to x + 1, modulo 2.

A Galois Ring is a similar algebraic structure. It is also associated with two
binary operations, + and ×. The additive group is an abelian group, but the
ring is not necessarily a group under multiplication. The construction is simi-
lar: GR(n, k) ∼= Zn[x]/〈g(x)〉 where g(x) is a polynomial of degree k that is ir-
reducible in Zn[x]. The additive structure is isomorphic to Zk

n. Again, an element
f(x) + 〈g(x)〉 ∈ Zn[x]/〈g(x)〉 is simply called f(x).

• Example: GR(4, 2) ∼= Z4[x]/〈x2 + x + 1〉

{0, 1, 2, 3, x, 2x, 3x, 1 + x, 1 + 2x, 1 + 3x, 2 + x, 2 + 2x, 2 + 3x, 3 + x, 3 + 2x, 3 + 3x}

The construction of this example requires finding a degree two irreducible poly-
nomial modulo 4. To do this simply take a polynomial that is irreducible modulo 2,
then take the square of the even degree terms and subtract from them the square
of the odd degree term modulo 4. Then take the square root of all the terms of the
polynomial while leaving their coefficients the same. Here is an example of how to
find a degree 4 irreducible polynomial modulo 4.

First, take an irreducible polynomial of degree 4 modulo 2: x4 + x + 1.
Then subtract the odd degree terms from the square of the even degree terms mod-
ulo 4.

(x4 + 1)2 − (x)2 = x8 + 2x4 + 1− x2 ≡ x8 + 2x4 + 3x2 + 1(mod4)

Take the square root of all the terms leaving the coefficients the same to get the
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degree 4 irreducible polynomial modulo 4: x4 + 2x2 + 3x + 1.

Along with finite fields and Galois Rings, permutation groups have provided us
with a method of constructing partial difference sets. We work with two operations
of permutation groups called the wreath product and exponentiation.

Consider two permutation groups (G,A) and (H, B), where A = {0, 1, 2, . . . , a−
1}. HA×G, where HA is the set of all functions from A to H, is a group under the op-
eration ((h0, h1, . . . , ha−1), g)◦((h′0, h′1, . . . , h′a−1), g

′) = ((h0h
′
0g , h1h

′
1g , . . . , ha−1h

′
a−1g), gg′).

One way of representing this group is with the wreath product. Each element of HA×
G is associated with a permutation π((h1, h2, . . . , ha), g), where (i, j)π((h1,h2,...,ha),g) =
(ig, jhi) for (i, j) ∈ A×B. The wreath product is simply another permutation group
((G,A) o (H,B), A×B) denoted G oH.
Example: Let A = {0, 1}, B = {0, 1, 2}, G = 〈(0, 1)〉, and H = 〈(0, 1, 2)〉

A×B = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}
The element π((0, 1, 2), (0)), (0, 1) acts on the elements of A×B as follows:
(0, 0) → (0(0,1), 0(0,1,2)) = (1, 1) (1, 0) → (1(0,1), 0(0)) = (0, 0)
(0, 1) → (0(0,1), 1(0,1,2)) = (1, 2) (1, 1) → (1(0,1), 1(0)) = (0, 1)
(0, 2) → (0(0,1), 2(0,1,2)) = (1, 0) (1, 2) → (1(0,1), 2(0)) = (0, 2)
Representing A×B with {0, 1, 2, 3, 4, 5}, this is the permutation (0, 4, 1, 5, 2, 3)
The entire permutation group G oH is:
{(0),(3,4,5),(3,5,4),(0,1,2),(0,1,2)(3,4,5),(0,1,2)(3,5,4),(0,2,1),(0,2,1)(3,4,5),
(0,2,1)(3,5,4),(0,3)(1,4)(2,5),(0,3,1,4,2,5),(0,3,2,5,1,4),(0,4,1,5,2,3),
(0,4,2,3,1,5),(0,4)(1,5)(2,3),(,5,2,4,1,3),(0,5)(1,3)(2,4),(0,5,1,3,2,4)}

Another way of representing HA×G is as a permutation group that acts on BA.
In this case, each element is associated with a permutation τ((h1, h2, . . . , ha), g),

where (j1, j2, . . . , ja)
τ((h1,h2,...,ha),g) = (j

h1′
1′ , j

h2′
2′ , . . . , j

ha′
a′ ). For readability, i′ is used

to represent ig
−1

for i ∈ A. This is called the exponentiation of (H, B) and (G,A),
which we write H ↑ G.
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Example: Let A = {0, 1}, B = {0, 1, 2}, G = 〈(0, 1)〉, and H = 〈(0, 1, 2)〉
BA = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
The element τ((0, 1, 2), (0)), (0, 1) acts on the elements of BA as follows:
(0, 0) → (0(0,1,2), 0(0)) = (1, 0) (0, 1) → (1(0,1,2), 0(0)) = (2, 0)
(0, 2) → (2(0,1,2), 0(0)) = (0, 0) (1, 0) → (0(0,1,2), 1(0)) = (1, 1)
(1, 1) → (1(0,1,2), 1(0)) = (2, 1) (1, 2) → (2(0,1,2), 1(0)) = (0, 1)
(2, 0) → (0(0,1,2), 2(0)) = (1, 2) (2, 1) → (1(0,1,2), 2(0)) = (2, 2)
(2, 2) → (2(0,1,2), 2(0)) = (0, 2)
Labelling BA as {0, 1, 2, 3, 4, 5, 6, 7, 8}, this is (0, 3, 4, 7, 8, 2)(1, 6, 5)
The entire permutation group H ↑ G is:
{(0),(0,1,2)(3,4,5)(6,7,8),(0,2,1)(3,5,4)(6,8,7),(0,3,6)(1,4,7)(2,5,8),
(0,4,8)(1,5,6)(2,3,7),(0,5,7)(1,3,7)(2,4,6),(0,6,3)(1,7,4)(2,8,5),
(0,7,5)(1,7,3)(2,6,4),(0,8,4)(1,6,5)(2,7,3),(1,3)(2,6)(5,7),
(0,3,4,7,8,2)(1,6,5),(0,6,8,5,4,1)(2,3,7),(0,2,8,7,4,3)(1,5,6),
(0,5)(1,8)(4,6),(0,8,4)(1,2,5,3,6,7),(0,1,4,5,8,6)(2,7,3),
(0,4,8)(1,7,6,3,5,2),(0,7)(2,4)(3,8)}

Difference sets and partial difference sets do not appear sporadically. Instead,
these sets are typically associated with some generalization of parameters. Along
with the parameter family, each type of set has a specific construction to follow
in order to find the difference set or partial difference set associated with those
parameters. Here are some partial difference set families.

Paley Partial Difference Sets

(q,
q − 1

2
,
q − 1

4
− 1,

q − 1

4
)

where q ≡ 1(mod4) and q is a prime power.
The construction of these partial difference sets can be done in this manner D =
{s ∈ F∗q : s = x2, x ∈ F ∗

q }.
• Examples

(5, 2, 0, 1) : G = F+
5
∼= Z5 \ {0} D = {12 = 1, 22 = 4, 32 = 4, 42 = 1}

(9, 4, 1, 2) : G = F+
9 D = {1, 2α + 1, 2, α + 2}

(13, 6, 2, 3) : G = F+
13
∼= Z13 \ {0} D = {1, 4, 9, 3, 12, 10}

Latin square type partial difference sets

(n2, r(n− 1), n + r2 − 3r, r2 − r)

The construction of this family involves finding r subgroups, Hi 3 1 ≤ i ≤ r, of
order n such that Hi ∩Hj = {0} 3 1 ≤ i, j ≤ r, i 6= j. The partial difference set is⋃

Hi \ {0} 3 1 ≤ i ≤ r.
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• Examples
(16, 9, 4, 6) Latin square PDS
G = Z4

2 n = 4 r = 3
H1 = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉
H2 = 〈(1, 0, 0, 0), (0, 1, 0, 0)〉
H3 = 〈(1, 0, 1, 0), (0, 1, 0, 1)〉
D = H1 ∪H2 ∪H3 \ {(0, 0, 0, 0)}

Moreover, the choices for Hi can be done systematically in order to find any
Latin square type partial difference set where G = K×K. If K = {e, a, b} the
list of possible subgroups is H1 = 〈(e, a)〉, H2 = 〈(a, e)〉, H3 = 〈(a, a)〉, H4 =
〈(a, b)〉.

Negative Latin square type partial difference sets

(n2, r(n− 1), n + r2 − 3r, r2 − r)

The way to construct this type of partial difference set is through the help of a
quadratic form. A quadratic form, Q : Gn → G, is a polynomial defined over the
finite field F that satisfies Q(αx) = α2Q(x) for x ∈ G, α ∈ F. It follows, that the
set D = {x|Q(x) = 0, x 6= 0, x ∈ Gn} is a partial difference set.

• Example
(625, 144, 43, 30) Negative Latin square PDS
Q : Z4

5 → Z5

Q(x, y, z, w) = x2 + xy + y2 + z2 + zw + w2

D = {(x, y, z, w)|Q(x, y, z, w) = 0, (x, y, z, w) 6= (0, 0, 0, 0)}

Note: Partial Difference Set Families can overlap. If we take the example where
q = 9 for the q ≡ 1(mod4)∧ q is a prime power family and build a Latin square type
partial difference set where G = Z2

3, n = 3, r = 2, and H1 = 〈(1, 0)〉, H2 = 〈(0, 1)〉
then we have two different constructions for the same partial difference set with the
parameters (9, 4, 1, 2).

A new family?

There are several examples of partial difference sets which satisfy the parameters
(23e, 22e + 2e + 1, 2e + 4, 2e + 2) for small values of e. There is no known general
construction for this family, and it is not known whether such a partial difference
set exists for e > 4. The small examples are constructed in a variety of ways, so we
are hopeful that there will be more members of this family.
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We noticed that this could be part of a more general family (n3, n2 + n + 1, n +
4, n + 2) for even n. This passes all non-existence criteria. We choose to work in
he specific case n = 2e because this allows us to work in the setting of a finite field
where we can exploit a multiplicative structure to help us search for new partial
difference sets.

3 Known constructions for partial difference sets

in this new parameter family

There are a number of partial difference sets with the desired parameters, (23e, 22e +
2e + 1, 2e + 4, 2e + 2). A few simple examples are given below.

When e = 1, a (8,7,6,4) partial difference set is found by selecting all nonidentity
elements in any group of order 8. Each element x of the group can be written as
a difference of group elements x = a − b 8 different ways. If we restrict a and b
to nonidentity elements, this leaves λ = 6 possible representations as differences for
each x. Since there are no nonidentity elements outside the set, µ is irrelevant and
this is also a (8, 7, 6) difference set.

For e = 2, the parameters (64,21,8,6) have two different constructions. The first
constructions uses the Latin square family of partial difference sets, (n2, r(n−1), n+
r2 − 3r, r2 − r), because the parameters are the same with r = 3 and n = 8. In
groups of the form H × H where H is any group of order 8, select the subgroups
{(h, 0)|h ∈ H},{(0, h)|h ∈ H},and {(h, h)|h ∈ H}. These subgroups are pairwise
disjoint except at the identity element; satisfying the conditions for the Latin square
construction. This construction will not work for all groups of order 64. For exam-
ple, Z64 has only one subgroup of order 8, so it is impossible to find three subgroups
of order 8. It will be shown in section 4 that no other abelian group of order 64 can
support a Latin squares partial difference set.

The second construction involves using the finite field GF(2, 6). If we take the
multiplicative subgroup of order 21 in F64, it is a (64,21,8,6) partial difference set in
the additive group. We will see that this is a special case of another construction.

When e = 3, Frank Fiedler and Mikhail Klin demonstrate a construction for a
(512,73,438,12,10) strongly regular graph. This graph is equivalent to a (512,73,12,10)
partial difference set. The 512 vertices of the graph were generated through a series
of wreath products and exponentiations of permutation groups. A computer search
was then used to choose orbits which formed a strongly regular graph with valency
73.
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They begin with two permutation groups, (G,A) and (H, B). In this case,
A = {0, 1}, G = Z2 = 〈(0, 1)〉, B = {0, 1, 2}, and H = Z3 = 〈(0, 1, 2)〉. The
exponentiation Z3 ↑ Z2 is a permutation group on the elements of BA. For ease
of notation, we let BA = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
be identified with Y = {0, 1, 2, 3, 4, 5, 6, 7, 8}. We then consider the exponentiation
Z2 ↑ (Z3 ↑ Z2) which is a permutation group on AY . Here |AY | = |A||Y | = 29,
the desired group size. At this point, Fiedler and Klin calculated all the 2-orbits of
(Z3 ↑ Z2) o Z2 and chose 10 of them with total valency of k = 73.

In our last known example, e = 4, C.L.M. DeLange demonstrated the construc-
tion of a (4096,273,20,18) partial difference set in the additive field generated by
Z2[x]/〈x12 + x9 + x3 + x2 + 1〉, F4096. This is the partial difference set D = ZK
where Z = {1, α5, α10} and K = 〈α45〉. That is, three cosets of the multiplicative
subgroup of order 91. DeLange notes that this set can be viewed another way. If we
consider F4096 to be a 3-dimensional vector space F3

16 and look at the graph which
corresponds to D, each vertex has exactly one neighbor in every direction.

4 Our Research

The majority of our work has been done to better understand the examples of partial
difference sets that satisfy the specified parameters. Along with this, we attempted
to extend some of the constructions to larger values of e. Almost all the testing
required the use of writing computer programs in C++.

Most of our research has involved different ways to construct subsets of k =
22e + 2e + 1 for various values of e. Brute force testing of a set would prove to be
infeasible for even moderate sizes. In order to do that sort of calculation, there are
two possibilities. First, the number of times each of the v elements of the group
can be represented as differences could be stored. This would require far too much
memory. For example when e = 6, we have |G| = 218, λ = 68, and µ = 66, both of
which cannot be stored in a single byte. Alternately for each element of G, compute
all k(k − 1) to determine how often it occurs. This becomes prohibitive in runtime
and can be difficult when working in groups other than EA(23e). Using characters
provides a method for determining whether a set is a partial difference set which
is both time and memory efficient to program. In addition, we know what value
our character sums should be through the help of simple algebra using equation....
Hence, for every value of e, the character sums must be 1 ± 2e. In all our work we
used character theory to verify partial difference sets.
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We noted that the Latin square construction could be used as an example of an
e = 2 partial difference set. This does not work, however in any other case.

Proof: We need v to be equal to both n2 and 23e for some n and e. We can
write n = 2

3
2
e. Also, we need k to be 22e + 2e + 1 and r(n− 1). Thus 22e + 2e + 1 =

r(n− 1) = r(2
3
2
e − 1). Solving for r we get

r =
22e + 2e + 1

2
3
2
e − 1

= 2
e
2 +

1

2
e
2 − 1

It is easy to see that the only value of e for which r is an integer is e = 2.

It is also interesting to determine which groups of order 64 support a Latin square
type partial difference set. In groups of the form H × H where H is any group of
order 8, select the subgroups {(h, 0)|h ∈ H},{(0, h)|h ∈ H},and {(h, h)|h ∈ H}. We
will show that none of the other 8 abelian groups of order 64 contain Latin square
partial difference sets.

For each group, we will show that it is impossible to distribute the elements of
order 2 into three distinct subgroups. Since all these groups are abelian, the sub-
groups of order 8 must be isomorphic to Z8,Z4 × Z2 or Z3

2, which have 1,3,and 7
elements of order 2 respectively. We will list the abelian groups (along with how
many elements of order 2 they contain) and then explain why we cannot have a
Latin square PDS in that group.

• Z32 × Z2,Z16 × Z4(3): Since there are only three elements of order 3, we
must have all subgroups isomorphic to Z8. This is not possible, however, because all
subgroups of order 8 contain the same order 2 element, (16, 0) and (8, 0) respectively.

• Z16 × Z2
2,Z3

4(7): Since there are only 7 elements of order 2, we must have no
Z3

2 and at most two Z4×Z2, and the rest Z8. This is clearly not possible in Z3
4 since

there are no Z8 subgroups. In Z16×Z2
2, all the allowable subgroups contain (8, 0, 0),

so they cannot be disjoint.

• Z8×Z3
2(15),Z4×Z4

2(31) All subgroups of order 8 not isomorphic to Z3
2 contain a

common element, (4, 0, 0, 0) in Z8×Z3
2 and (2, 0, 0, 0, 0) in Z4×Z4

2. There must then
be at least two subgroups of the form Z3

2. These subgroups will be 〈g1, g2, g3〉 and
〈g4, g5, g6〉 and where each gi is an element of order 2. Assume we can choose five of
the six generators required. For the sixth, to allow the subgroups to be disjoint, we
cannot choose anything in 〈g1, g2, g3〉+ 〈g4, g5〉 where A+B = {a+ b|a ∈ A, b ∈ B}.
This eliminates 31 possibilities, so we cannot find two disjoint Z3

2 subgroups.
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• Z8×Z4×Z2(7): There can clearly be no Z3
2 and at most two Z4×Z2. There can

be at most one Z8 because they all contain (4, 0, 0). We must then have exactly one
Z8 and two Z4×Z2 . It is sufficient to show that there cannot be two Z2

2 subgroups.
This argument is similar to the previous case. We need four generators, and when
we choose 3 we eliminate all 7 elements of order two.

In another of our simple examples, we noted that the multiplicative subgroup
of order 21 of F∗64 is a partial difference set in the additive group of F64. This is
an example of an e = 2 partial difference set. When we attempted to extend this
to higher values of e, the subgroups did not form partial difference sets. For exam-
ple, when e = 3 we took the subgroup of order 73 from F∗512, the character sums
did not equal 9 or -7. The e = 2 case is in fact a specific case of the next construction.

The DeLange example provided us with a partial difference set construction for
the e = 4 case by looking at the multiplicative field F4096. From this, he used the
multiplicative subgroup of order 91 to make 3 cosets. The union of these cosets
is a partial difference set. This provided us with an example that could easily be
modified by taking the field F23e and finding subgroup of order k/3. In order to
extend the field size, we needed to find irreducible primitive polynomials in F(2, 3e)
of degree 3e. Meaning, α ∈ F(2, 3e) 3 〈α〉 = F(2, 3e)∗. Then, with each subgroup
of order k/3, we used a computer search to test out different coset representatives
as the possible set Z in DeLange’s notation to see if they would provide us with a
partial difference set. In every case, the tested triple of coset leaders is of the form
{alphaa, αb, αc} 3 0 ≤ a, b, c < k/3, a 6= b 6= c.

Our initial reaction for this example was to check whether or not if provided
us with a partial difference set in the case where e = 2 : (64, 21, 8, 6). Here, we
are working in the field F64 generated by Z2[x]/〈x6 + x + 1〉 . The multiplicative
subgroup of order 7 is generated by 〈α9〉 is our K as noted in the DeLange con-
struction. Then, we search over different coset leaders to find that any combination
of three coset leaders of the form {αa, αb, αc} 3 0 ≤ a, b, c < 9, a 6= b 6= c, along
with the multiplicative subgroup of order 7 gives us a partial difference set such that
Z = {αa, αb, αc}, K = 〈α9〉 and D = Z × K. This is no real surprise because the
cosets of the multiplicative subgroup of order 7 are additive subgroups of order 8
that pairwise intersect in only the identity. Hence, we fall back into the Latin square
type partial difference construction in which n = 8 and r = 3.

Next, we looked at constructing the example DeLange presented in his paper.
After recreating his difference set, we further tested for all combinations of coset
representatives that could produce another difference set for the e = 4 case. Our
computer search found 135 combinations of coset representatives, including De-
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Lange’s example, that produced a difference set in the additive field F4096. These
135 combinations of coset representatives do find distinct partial difference sets;
however, we shall note that each of these partial difference sets will relate to one of
these three representations of Z.

{1, α5, α10} {1, α5, α25} {1, α5, α40}
The rest of the partial difference sets build off of these three examples in this man-
ner, xi ∗ Z where 1 ≤ i < 45.

We attempted to extend the DeLange construction to higher values of e. Here
we will compare the circumstances for e = 6, e = 8 against the e = 4 case.

e Group primitive irreducible polynomial K |K| (v, k, λ, µ)
4 F4096 α12 = α9 + α3 + α2 + 1 〈α45〉 91 (4096, 273, 20, 18)
6 F262144 α18 = α7 + 1 〈α189〉 1387 (262144, 4161, 68, 66)
8 F16777216 α24 = α23 + α22 + α7 + 1 〈α765〉 21931 (16777216, 65793, 260, 258)

The parameters of these partial difference sets grow very quickly making com-
puter search a lengthy process. Still, our tests came back with no positive results
for a new partial difference set when searching over different selections of coset rep-
resentatives.

Note: We attempted this method only when e is even because when e is odd,
3 does not divide k. The idea of using more than three coset representatives for a
subgroup was discussed. Here is an example of such a setup: for e = 4, use the multi-
plicative subgroup of order 39, 〈α7〉, as K, and test for Z = {αi0 , αi1 , αi2 , αi3 , αi4 , αi5 , αi6} 3
∀ix, iy, 0 ≤ ix < k/7 and ix 6= iy. Unfortunately, this example does not lead to a
partial difference set.

Another example of a partial difference set from this parameter family was con-
structed through permutation groups. We reproduced the e = 3 PDS which Fiedler
and Klin constructed and verified that it was a partial difference set. Then we at-
tempted to extend their construction for larger values of e.

We hoped to find other permutation groups (G,A) and (H, B) such that G ↑
(H ↑ G) would be a permutation group which acts on a group with order 23e.

If |B| = 1 we could choose |A| = 23e and this would give us a group of the correct
size. This does not help in finding a partial difference set because G ↑ (H ↑ G) = G
and we would have to choose k of 23e 2-orbits which is the equivalent to choosing
the elements of our partial difference set directly.
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We know that G ↑ (H ↑ G) acts on a set of order |A|(|B||A|). In order for |A|(|B||A|)
to be a power of 2, |A| must be a power of 2. Assume |B| 6= 1 and |A| > 2. The

smallest example is |A| = 4,|B| = 2 which has |A|(|B||A|) = 232. The smallest set
with order 23e is 23(54).

Thus, if we are going to find a reasonably sized partial difference set, we must let
|A| have order 2. Since |A|(|B||A|) = 23e, |B| must be a multiple of 3. |B| = 3 is the
case studied by Fiedler and Klin. The next smallest is |B| = 6 which corresponds
to e = 12. This is infeasible for us, but could be possible for someone with more
computing power and time.

DeLange concluded his paper describing the e = 4 strongly regular graphs as a
graph with a vertex set F3

16 such that each vertex has a unique neighbor in each
of the 273 directions. In other words, if we take an element of the 3-dimensional
vector space F3

16, then it has one neighbor in each of the 1-dimensional subspaces of
F3

16. In general, the number of one dimensional vector spaces in a three dimensional
vector space F3

2e is found by taking the number of non-zero elements in the vector
space and dividing by the number of non-zero elements in the base field. The latter
is the number of non-zero elements in each subspace. This shows that the number
of one-dimensional subspaces is 23e−1

2e−1
= 22e + 2e + 1 = k. This gave us hope that we

could generalize this result for our entire family.
We began with trying to associate this property with the e = 2 case. A computer

search showed that we could select a basis for F3
4 such that each subspace contained

one element of our partial difference set. We hoped to find that this would also be
true for e = 3.

We first tried to find a basis for the vector space that would allow the set to spread
out to one in each subspace. We used the partial difference set from Fiedler and Klin.
We used a computer search to generate the vector space F3

8 and its subspaces and
determine how many elements were in each subspace. We were unable to complete
this search because the number of ways to represent F3

8 as a three-dimensional vector
space is prohibitive.

In another attempt, we used the canonical basis {(0, 0, 1), (0, 1, 0), (1, 0, 0)} to
define the vector space and tried to fit the partial difference set into it. We used
automorphisms of F512 to see if it would send one element to each vector space.
This approach is more intuitive, but equivalent to choosing the elements of the
basis. There are equally many ways to do this, so we did not have time to exhaust
all possible automorphisms.

In either attempt, the search space involved was extremely large. Nothing con-
clusive was discovered while the programs ran. After the programs ran for a few
minutes, we soon realized that they could run for several years before finishing. We
decided not to continue with this approach.
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Another approach we decided to look at was possibly embedding the e = 2
partial difference set in F64 inside of F4096. When looking at the prime factorization
of v − 1 and k, these numbers build off of one another, especially for k .

e v − 1 k
2 32 ∗ 7− 1 = 63 3 ∗ 7 = 21
4 32 ∗ 5 ∗ 7 ∗ 13− 1 = 4095 3 ∗ 7 ∗ 13 = 273
8 32 ∗ 5 ∗ 7 ∗ 13 ∗ 17 ∗ 241− 1 = 1677215 3 ∗ 7 ∗ 13 ∗ 241 = 65793

Hence, we tried to take 13 ”cosets” of the multiplicative subgroup of order 21
in F4096 to see if that would build a new partial difference set with the e = 4 pa-
rameters. Combinatorially, the search space would be

(
195
13

) ≈ 6 ∗ 1019 which makes
testing this approach a very lengthy matter. After running a program for several
hours, we managed to barely scratch the surface of the entire search space. Thus,
we abandoned this approach.

As we have mentioned earlier, the second most important question when dealing
with partial difference sets is if there exists a partial difference set of size k in a
group of order v, are there any other non-isomorphic groups of order v that support
a partial difference set of the same size.

Earlier we discussed that there are examples known for the e = 2 case in groups
other than Z6

2, namely Z2
8 and Z2

4×Z2
2. These groups used the Latin square construc-

tion to find partial difference sets; however, no other abelian groups supported Latin
square type partial difference sets. Hence, we attempted to find a partial difference
sets in the group Z3

4 with the help of Galois Rings. Then we extended this method
to the e = 4 case to see if it would produce are partial difference set in Z6

4.

We use Galois Rings to help us because GR(4, 3)+ ∼= Z3
4. As noted above in the

preliminary section, if you have an irreducible polynomial, x3 +2x2 +x+3, in Z4[x],
GR(4, 3) ∼= Z4[x]/〈x3 + 2x2 + x + 3〉. If we look at Galois Ring in the multiplicative
setting, replacing x3 with 2x2 + 3x + 1, we notice that x7 = 1. These 7 elements
{1, x, x2, x3 = 2x2+3x+1, x4 = 3x2+3x+2, x5 = x2+3x+3, x6 = x2+2x+1} do not
form an additive group when we union 0 with this list. This prevents us from falling
into the Latin square construction of taking the union of 3 additive subgroups of or-
der 8 that pairwise intersect in only the identity to construct a partial difference set.
We then took the union of all the possible combinations of three cosets of these ele-
ments to see if this would construct a partial difference set. Unfortunately it did not.

We extended this method to e = 4 to see what would happen in Z6
4. Again,

GR(4, 6)+ ∼= Z6
4 and we constructed GR(4, 6) by Z4[x]/〈x6 +2x3 +3x+1〉. Then we

looked at the multiplicative structure of GR(4, 6), and notice x63 = 1 when replacing
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x6 with 2x3 +x+3. We then used the multiplicative subgroup of order 21, 〈x3〉 and
took 13 cosets of it to see if this would construct a partial difference set. Again, our
attempt did not work.

5 Concluding Remarks

We were unable to produce a new partial difference set in the (23e, 22e + 2e + 1, 2e +
4, 2e+2) family. We have reproduced and verified all known examples, and attempted
to extend the techniques used. Large search spaces prohibited us from testing many
possibilities for most of our attempted methods of construction. Still, we are hopeful
that more partial difference sets in this family exist, and that a general construction
can be found.
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