Solutions to the Sixtieth William Lowell Putnam Mathematical Competition

Saturday, December 4, 1999
Prepared by Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A-1 Note that if $r(x)$ and $s(x)$ are any two functions, then

$$
\max (r, s)=(r+s+|r-s|) / 2
$$

Therefore, if $F(x)$ is the given function, we have

$$
\begin{aligned}
F(x) & =\max \{-3 x-3,0\}-\max \{5 x, 0\}+3 x+2 \\
& =(-3 x-3+|3 x-3|) / 2-(5 x+|5 x|) / 2+3 x+2 \\
& =|(3 x-3) / 2|-|5 x / 2|-x+\frac{1}{2},
\end{aligned}
$$

so we may set $f(x)=(3 x-3) / 2, g(x)=5 x / 2$, and $h(x)=-x+\frac{1}{2}$.
A-2 First factor $p(x)=q(x) r(x)$, where q has all real roots and r has all complex roots. Notice that each root of q has even multiplicity, otherwise p would have a sign change at that root. Thus $q(x)$ has a square root $s(x)$.
Now write $r(x)=\prod_{j=1}^{k}\left(x-a_{j}\right)\left(x-\overline{a_{j}}\right)$ (possible because r has roots in complex conjugate pairs). Write $\prod_{j=1}^{k}\left(x-a_{j}\right)=t(x)+i u(x)$ with t, x having real coefficients. Then for x real,

$$
p(x)=q(x) r(x)=s(x)^{2}(t(x)+i u(x))(\overline{t(x)+i u(x)})=(s(x) t(x))^{2}+(s(x) u(x))^{2} .
$$

A-3 First solution: Computing the coefficient of x^{n+1} in the identity $\left(1-2 x-x^{2}\right) \sum_{m=0}^{\infty} a_{m} x^{m}=$ 1 yields the recurrence $a_{n+1}=2 a_{n}+a_{n-1}$; the sequence $\left\{a_{n}\right\}$ is then characterized by this recurrence and the initial conditions $a_{0}=1, a_{1}=2$.
Define the sequence $\left\{b_{n}\right\}$ by $b_{2 n}=a_{n-1}^{2}+a_{n}^{2}, b_{2 n+1}=a_{n}\left(a_{n-1}+a_{n+1}\right)$. Then

$$
\begin{aligned}
2 b_{2 n+1}+b_{2 n} & =2 a_{n} a_{n+1}+2 a_{n-1} a_{n}+a_{n-1}^{2}+a_{n}^{2} \\
& =2 a_{n} a_{n+1}+a_{n-1} a_{n+1}+a_{n}^{2} \\
& =a_{n+1}^{2}+a_{n}^{2}=b_{2 n+2}
\end{aligned}
$$

and similarly $2 b_{2 n}+b_{2 n-1}=b_{2 n+1}$, so that $\left\{b_{n}\right\}$ satisfies the same recurrence as $\left\{a_{n}\right\}$. Since further $b_{0}=1, b_{1}=2$ (where we use the recurrence for $\left\{a_{n}\right\}$ to calculate $a_{-1}=0$), we deduce that $b_{n}=a_{n}$ for all n. In particular, $a_{n}^{2}+a_{n+1}^{2}=b_{2 n+2}=a_{2 n+2}$.
Second solution: Note that

$$
\begin{aligned}
\frac{1}{1-2 x-x^{2}} & =\frac{1}{2 \sqrt{2}}\left(\frac{\sqrt{2}+1}{1-(\sqrt{2}+1) x}+\frac{\sqrt{2}-1}{1-(1-\sqrt{2}) x}\right) \\
& =\frac{1}{2 \sqrt{2}}\left(\sum_{n=0}^{\infty}(\sqrt{2}+1)^{n+1} x^{n}-\sum_{n=0}^{\infty}(1-\sqrt{2})^{n+1} x^{n}\right)
\end{aligned}
$$

so that $a_{n}=\frac{1}{2 \sqrt{2}}\left((\sqrt{2}+1)^{n+1}-(1-\sqrt{2})^{n+1}\right)$. A simple computation (omitted here) now shows that $a_{n}^{2}+a_{n+1}^{2}=a_{2 n+2}$.

A-4 Denote the series by S, and note that

$$
S=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left(3^{m} / m\right)\left(3^{m} / m+3^{n} / n\right)}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left(3^{n} / n\right)\left(3^{m} / m+3^{n} / n\right)}
$$

where the second equality follows by interchanging m and n. Thus

$$
\begin{aligned}
2 S & =\sum_{m} \sum_{n}\left(\frac{1}{\left(3^{m} / m\right)\left(3^{m} / m+3^{n} / n\right)}+\frac{1}{\left(3^{n} / n\right)\left(3^{m} / m+3^{n} / n\right)}\right) \\
& =\sum_{m} \sum_{n} \frac{1}{\left(3^{m} / m\right)\left(3^{n} / n\right)} \\
& =\left(\sum_{n=1}^{\infty} \frac{n}{3^{n}}\right)^{2} .
\end{aligned}
$$

But $\sum_{n=1}^{\infty} n / 3^{n}=3 / 4$ (since, e.g., it's $f^{\prime}(1)$, where $\left.f(x)=\sum_{n=0}^{\infty} x^{n} / 3^{n}=3 /(3-x)\right)$, and we conclude that $S=9 / 32$.

A-5 First solution: (by Reid Barton) Let r_{1}, \ldots, r_{1999} be the roots of P. Draw a disc of radius ϵ around each r_{i}, where $\epsilon<1 / 3998$; this disc covers a subinterval of $[-1 / 2,1 / 2]$ of length at most 2ϵ, and so of the 2000 (or fewer) uncovered intervals in [$-1 / 2,1 / 2$], one, which we call I, has length at least $\delta=(1-3998 \epsilon) / 2000>0$. We will exhibit an explicit lower bound for the integral of $|P(x)| / P(0)$ over this interval, which will yield such a bound for the entire integral.
Note that

$$
\frac{|P(x)|}{|P(0)|}=\prod_{i=1}^{1999} \frac{\left|x-r_{i}\right|}{\left|r_{i}\right|} .
$$

Also note that by construction, $\left|x-r_{i}\right| \geq \epsilon$ for each $x \in I$. If $\left|r_{i}\right| \leq 1$, then we have $\frac{\left|x-r_{i}\right|}{\left|r_{i}\right|} \geq \epsilon$. If $\left|r_{i}\right|>1$, then

$$
\frac{\left|x-r_{i}\right|}{\left|r_{i}\right|}=\left|1-x / r_{i}\right| \geq 1-\left|x / r_{i}\right| \geq 1-1 / 2=1 / 2>\epsilon
$$

We conclude that $\int_{I}|P(x) / P(0)| d x \geq \delta \epsilon$, independent of P.
Second solution: It will be a bit more convenient to assume $P(0)=1$ (which we may achieve by rescaling unless $P(0)=0$, in which case there is nothing to prove) and to prove that there exists $D>0$ such that $\int_{-1}^{1}|P(x)| d x \geq D$, or even such that $\int_{0}^{1}|P(x)| d x \geq D$.
We first reduce to the case where P has all of its roots in $[0,1]$. If this is not the case, we can factor $P(x)$ as $Q(x) R(x)$, where Q has all roots in the interval and R has none.

Then R is either always positive or always negative on $[0,1]$; assume the former. Let k be the largest positive real number such that $R(x)-k x \geq 0$ on $[0,1]$; then

$$
\int_{-1}^{1}|P(x)| d x=\int_{-1}^{1}|Q(x) R(x)| d x>\int_{-1}^{1}|Q(x)(R(x)-k x)| d x
$$

and $Q(x)(R(x)-k x)$ has more roots in $[0,1]$ than does P (and has the same value at $0)$. Repeating this argument shows that $\int_{0}^{1}|P(x)| d x$ is greater than the corresponding integral for some polynomial with all of its roots in $[0,1]$.
Under this assumption, we have $P(x)=c \prod_{i=1}^{1999}\left(x-r_{i}\right)$ for some $r_{i} \in(0,1]$. Since $P(0)=-c \prod r_{i}=1$, we have $|c| \geq \prod\left|r_{i}^{-1}\right| \geq 1$.
Thus it suffices to prove that if $Q(x)$ is a monic polynomial of degree 1999 with all of its roots in $[0,1]$, then $\int_{0}^{1}|Q(x)| d x \geq D$ for some constant $D>0$. But the integral of $\int_{0}^{1} \prod_{i=1}^{1999}\left|x-r_{i}\right| d x$ is a continuous function for $r_{i} \in[0,1]$. The product of all of these intervals is compact, so the integral achieves a minimum value for some r_{i}. This minimum is the desired D.

Note: combining the two approaches gives a constructive solution with a constant that is better, but is still far from optimal. I don't know offhand whether it is even known what the optimal constant and/or the polynomials achieving that constant are.

A-6 Rearranging the given equation yields the much more tractable equation

$$
\frac{a_{n}}{a_{n-1}}=6 \frac{a_{n-1}}{a_{n-2}}-8 \frac{a_{n-2}}{a_{n-3}} .
$$

Let $b_{n}=a_{n} / a_{n-1}$; with the initial conditions $b_{2}=2, b_{3}=12$, one easily obtains $b_{n}=2^{n-1}\left(2^{n-2}-1\right)$, and so

$$
a_{n}=2^{n(n-1) / 2} \prod_{i=1}^{n-1}\left(2^{i}-1\right)
$$

To see that n divides a_{n}, factor n as $2^{k} m$, with m odd. Then note that $k \leq n \leq$ $n(n-1) / 2$, and that there exists $i \leq m-1$ such that m divides $2^{i}-1$, namely $i=\phi(m)$ (Euler's totient function: the number of integers in $\{1, \ldots, m\}$ relatively prime to m).
$\mathrm{B}-1$ The answer is $1 / 3$. Let G be the point obtained by reflecting C about the line $A B$. Since $\angle A D C=\frac{\pi-\theta}{2}$, we find that $\angle B D E=\pi-\theta-\angle A D C=\frac{\pi-\theta}{2}=\angle A D C=$ $\pi-\angle B D C=\pi-\angle B D G$, so that E, D, G are collinear. Hence

$$
|E F|=\frac{|B E|}{|B C|}=\frac{|B E|}{|B G|}=\frac{\sin (\theta / 2)}{\sin (3 \theta / 2)},
$$

where we have used the law of sines in $\triangle B D G$. But by l'Hôpital's Rule, $\lim _{\theta \rightarrow 0} \frac{\sin (\theta / 2)}{\sin (3 \theta / 2)}=$ $\lim _{\theta \rightarrow 0} \frac{\cos (\theta / 2)}{3 \cos (3 \theta / 2)}=1 / 3$.

B-2 Suppose that P does not have n distinct roots; then it has a root of multiplicity at least 2 , which we may assume is $x=0$ without loss of generality. Let x^{k} be the greatest power of x dividing $P(x)$, so that $P(x)=x^{k} R(x)$ with $R(0) \neq 0$; a simple computation yields

$$
P^{\prime \prime}(x)=k(k-1) x^{k-2} R(x)+2 k x^{k-1} R^{\prime}(x)+x^{k} R^{\prime \prime}(x) .
$$

Since $R(0) \neq 0$ and $k \geq 2$, we conclude that the greatest power of x dividing $P^{\prime \prime}(x)$ is x^{k-2}. But $P(x)=Q(x) P^{\prime \prime}(x)$, and so x^{2} divides $Q(x)$. We deduce (since Q is quadratic) that $Q(x)$ is a constant C times x^{2}; in fact, $C=1 /(n(n-1))$ by inspection of the leading-degree terms of $P(x)$ and $P^{\prime \prime}(x)$.
Now if $P(x)=\sum_{j=0}^{n} a_{j} x^{j}$, then the relation $P(x)=C x^{2} P^{\prime \prime}(x)$ implies that $a_{j}=$ $C j(j-1) a_{j}$ for all j; hence $a_{j}=0$ for $j \leq n-1$, and we conclude that $P(x)=a_{n} x^{n}$, which has all identical roots.

B-3 We first note that

$$
\sum_{m, n>0} x^{m} y^{n}=\frac{x y}{(1-x)(1-y)} .
$$

Subtracting S from this gives two sums, one of which is

$$
\sum_{m \geq 2 n+1} x^{m} y^{n}=\sum_{n} y^{n} \frac{x^{2 n+1}}{1-x}=\frac{x^{3} y}{(1-x)\left(1-x^{2} y\right)}
$$

and the other of which sums to $x y^{3} /\left[(1-y)\left(1-x y^{2}\right)\right]$. Therefore

$$
\begin{aligned}
S(x, y) & =\frac{x y}{(1-x)(1-y)}-\frac{x^{3} y}{(1-x)\left(1-x^{2} y\right)}-\frac{x y^{3}}{(1-y)\left(1-x y^{2}\right)} \\
& =\frac{x y\left(1+x+y+x y-x^{2} y^{2}\right)}{\left(1-x^{2} y\right)\left(1-x y^{2}\right)}
\end{aligned}
$$

and the desired limit is $\lim _{(x, y) \rightarrow(1,1)} x y\left(1+x+y+x y-x^{2} y^{2}\right)=3$.
B-4 We make repeated use of the following fact: if f is a differentiable function on all of \mathbb{R}, $\lim _{x \rightarrow-\infty} f(x) \geq 0$, and $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$, then $f(x)>0$ for all $x \in \mathbb{R}$. (Proof: if $f(y)<0$ for some x, then $f(x)<f(y)$ for all $x<y$ since $f^{\prime}>0$, but then $\lim _{x \rightarrow-\infty} f(x) \leq f(y)<0$.)
From the inequality $f^{\prime \prime \prime}(x) \leq f(x)$ we obtain

$$
f^{\prime \prime} f^{\prime \prime \prime}(x) \leq f^{\prime \prime}(x) f(x)<f^{\prime \prime}(x) f(x)+f^{\prime}(x)^{2}
$$

since $f^{\prime}(x)$ is positive. Applying the fact to the difference between the right and left sides, we get

$$
\frac{1}{2}\left(f^{\prime \prime}(x)\right)^{2}<f(x) f^{\prime}(x)
$$

Adding $\frac{1}{2} f^{\prime}(x) f^{\prime \prime \prime}(x)$ to both sides and again invoking the original bound $f^{\prime \prime \prime}(x) \leq f(x)$, we get

$$
\frac{1}{2}\left[f^{\prime}(x) f^{\prime \prime \prime}(x)+\left(f^{\prime \prime}(x)\right)^{2}\right]<f(x) f^{\prime}(x)+\frac{1}{2} f^{\prime}(x) f^{\prime \prime \prime}(x) \leq \frac{3}{2} f(x) f^{\prime}(x)
$$

Applying the fact again, we get

$$
\frac{1}{2} f^{\prime}(x) f^{\prime \prime}(x)<\frac{3}{4} f(x)^{2}
$$

Multiplying both sides by $f^{\prime}(x)$ and applying the fact once more, we get

$$
\frac{1}{6}\left(f^{\prime}(x)\right)^{3}<\frac{1}{4} f(x)^{3} .
$$

From this we deduce $f^{\prime}(x)<(3 / 2)^{1 / 3} f(x)<2 f(x)$, as desired.
Note: I don't know what the best constant is, except that it is not less than 1 (because $f(x)=e^{x}$ satisfies the given conditions).

B-5 We claim that the eigenvalues of A are 0 with multiplicity $n-2$, and $n / 2$ and $-n / 2$, each with multiplicity 1 . To prove this claim, define vectors $v^{(m)}, 0 \leq m \leq n-1$, componentwise by $\left(v^{(m)}\right)_{k}=e^{i k m \theta}$, and note that the $v^{(m)}$ form a basis for \mathbb{C}^{n}. (If we arrange the $v^{(m)}$ into an $n \times n$ matrix, then the determinant of this matrix is a Vandermonde product which is nonzero.) Now note that

$$
\left(A v^{(m)}\right)_{j}=\sum_{k=1}^{n} \cos (j \theta+k \theta) e^{i k m \theta}=\frac{1}{2}\left(e^{i j \theta} \sum_{k=1}^{n} e^{i k(m+1) \theta}+e^{-i j \theta} \sum_{k=1}^{n} e^{i k(m-1) \theta}\right) .
$$

Since $\sum_{k=1}^{n} e^{i k \ell \theta}=0$ for integer ℓ unless $n \mid \ell$, we conclude that $A v^{(m)}=0$ for $m=0$ or for $2 \leq m \leq n-1$. In addition, we find that $\left(A v^{(1)}\right)_{j}=\frac{n}{2} e^{-i j \theta}=\frac{n}{2}\left(v^{(n-1)}\right)_{j}$ and $\left(A v^{(n-1)}\right)_{j}=\frac{n}{2} e^{i j \theta}=\frac{n}{2}\left(v^{(1)}\right)_{j}$, so that $A\left(v^{(1)} \pm v^{(n-1)}\right)= \pm \frac{n}{2}\left(v^{(1)} \pm v^{(n-1)}\right)$. Thus $\left\{v^{(0)}, v^{(2)}, v^{(3)}, \ldots, v^{(n-2)}, v^{(1)}+v^{(n-1)}, v^{(1)}-v^{(n-1)}\right\}$ is a basis for \mathbb{C}^{n} of eigenvectors of A with the claimed eigenvalues.
Finally, the determinant of $I+A$ is the product of $(1+\lambda)$ over all eigenvalues λ of A; in this case, $\operatorname{det}(I+A)=(1+n / 2)(1-n / 2)=1-n^{2} / 4$.

B-6 Choose a sequence p_{1}, p_{2}, \ldots of primes as follows. Let p_{1} be any prime dividing an element of S. To define p_{j+1} given p_{1}, \ldots, p_{j}, choose an integer $N_{j} \in S$ relatively prime to $p_{1} \cdots p_{j}$ and let p_{j+1} be a prime divisor of N_{j}, or stop if no such N_{j} exists.
Since S is finite, the above algorithm eventually terminates in a finite sequence p_{1}, \ldots, p_{k}. Let m be the smallest integer such that $p_{1} \cdots p_{m}$ has a divisor in S. (By the assumption on S with $n=p_{1} \cdots p_{k}, m=k$ has this property, so m is well-defined.) If $m=1$, then $p_{1} \in S$, and we are done, so assume $m \geq 2$. Any divisor d of $p_{1} \cdots p_{m}$ in S must be a multiple of p_{m}, or else it would also be a divisor of $p_{1} \cdots p_{m-1}$, contradicting the choice of m. But now $\operatorname{gcd}\left(d, N_{m-1}\right)=p_{m}$, as desired.

