# Low Rank Relative Difference Sets Using Galois Rings 

 Qing Xiang $\dagger$ and Jim Davis $\ddagger$$\dagger$ Supported by NSA grant MDA 904-99-1-0012
$\ddagger$ Supported by a grant from Hewlett-Packard

Definition 1 A Relative Difference set (RDS) in a group $G$ of order mu relative to a normal subgroup $U$ of order $u$ is a subset $D$ with $k$ elements so that every element of $G \backslash U$ is represented exactly $\lambda$ times as $d_{1} d_{2}^{-1}$.

Example $2 G=\left\langle x, y \mid x^{4}=y^{2}=1\right\rangle, U=\left\langle x^{2}\right\rangle$ : $D=\left\{1, y, x, x^{3} y\right\}$ is a $(m, u, k, \lambda)=(4,2,4,2)$ RDS.

- Parameters for this talk: $(m, u, k, \lambda)=$

$$
\left(2^{2 t}, 2^{t}, 2^{2 t}, 2^{t}\right)
$$

- Previously known: any abelian group, rank $\geq 2 t .$.


## WITH ONE EXCEPTION!!

## Arasu-Sehgal example:

Example $3 G=\left\langle x, y, z \mid x^{4}=y^{4}=z^{4}=1\right\rangle, U=$ $\left\langle x^{2}, y^{2}\right\rangle, D=B_{1} \cup z B_{2}$ is a $(16,4,16,4)$ RDS for $B_{i} \subset\left\langle x, y, z^{2}\right\rangle$.

Ray-Chaudhuri, Xiang view: Use Galois Rings.

$$
\begin{aligned}
& G R(4,2)=Z_{4}[X] /\left\langle X^{2}+X+1\right\rangle, X^{3}=1 . \\
& F_{0}=\mathcal{T}=\left\{0,1, X, X^{2}\right\} \\
& \left(=\left\{1, x, y, x^{3} y^{3}\right\}\right) \\
& B_{1}=\left(F_{0}, 1\right) \cup\left((1+2) F_{0}, z^{2}\right) \\
& \left(=\left\{1, x, y, x^{3} y^{3}, z^{2}, x^{3} z^{2}, y^{3} z^{2}, x y z^{2}\right\}\right) \\
& V=\{0,2\} ; \alpha_{1}=0, \alpha_{2}=2 X
\end{aligned}
$$

$$
B_{1}=\left((1+0+0) F_{0}, 0\right) \cup\left((1+0+2) F_{0}, 2\right) ;
$$

$$
B_{2}=\left((1+2 X+0) F_{0}, 0\right) \cup\left((1+2 X+2) F_{0}, 2\right)
$$

Example 4 (New construction) Consider $G R(4,3)=Z_{4}[X] /\left\langle X^{3}+2 X^{2}+X+3\right\rangle, X^{7}=1$.

$$
V=\{0,2,2 X, 2 X+2\} ; \alpha_{1}=0, \alpha_{2}=2 X^{2}
$$

$$
\begin{aligned}
& B_{1}=\left((1+0+0) F_{0}, 0\right) \cup\left((1+0+2) F_{0}, 2\right) \cup(1+ \\
& \left.0+2 X) F_{0}, 2 X\right) \cup\left((1+0+2 X+2) F_{0}, 2 X+2\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{2}=\left(\left(1+2 X^{2}+0\right) F_{0}, 0\right) \cup\left(\left(1+2 X^{2}+2\right) F_{0}, 2\right) \cup \\
& \left.\left(1+2 X^{2}+2 X\right) F_{0}, 2 X\right) \cup\left(\left(1+2 X^{2}+2 X+\right.\right. \\
& \text { 2) } \left.F_{0}, 2 X+2\right)
\end{aligned}
$$

Key idea: Find a $V$ as small as possible so that the $B_{i}$ have good character theoretic properties.

Hou's idea: Find the dual of $V$ under an appropriate inner product.

Definition 5 Define $s(2, t)=\max _{a \in 1+2 \mathcal{T}}\{\operatorname{dimW}$ $W$ is a $G F(2)$-subspace of $R / 2 R$ and $W \subseteq\{\pi(x) \in$ $R / 2 R \mid T(a x)=0, x \in \mathcal{T}\}\}$

For our purposes, $V=W^{\perp}$. Thus, the problem boils down to computing $s(2, t)$. Reading $T(a x)$ 2-adically, we get

$$
T(a x)=b_{x}+2 c_{x}
$$

where $b_{x}=\operatorname{tr}(\bar{x})$ and $c_{x}=Q(\bar{x})+\operatorname{tr}(\eta \bar{x}), Q(\bar{x})=$ $\sum_{0 \leq i<j \leq t-1} \bar{x}^{2^{i}+2^{j}}$ and $\eta$ an element of the finite field associated to $a$.

## Quadratic forms to the rescue

After some computations (including using Hilbert's Theorem 90), we see that the quadratic form $Q_{\mathcal{R}}(y)=\operatorname{tr}(y \mathcal{R}(y))=\operatorname{tr}\left(y\left(\left(\eta^{2}+\eta+1\right) y+y^{2}\right)\right)$ will be very useful.

After computing the radical of $Q_{\mathcal{R}}(y)$ and observing odd/even possibilities, we get the following theorem:

## Theorem $6 s(2, t)=\left\lfloor\frac{t}{2}\right\rfloor$

Idea of proof: We can choose $\eta$ so that the quadratic form is hyperbolic. The Witt Index implies that the maximal vanishing subspace of the quadratic form has the appropriate size. We tinker with a few details to get the result.

## Consequences of knowing $s(2, t)$

Theorem 7 If $|G|=2^{3 t}$ and $G$ contains a subgroup isomorphic to $Z_{4}^{t} \times Z_{2}^{\left\lceil\frac{t}{2}\right\rceil}$, then $G$ has a $\left(2^{2 t}, 2^{t}, 2^{2 t}, 2^{t}\right)$ RDS relative to the appropriate subgroup.

Partial Difference Set (PDS) implications: pins down the possible parameters for a certain type of Latin Square PDS. This was Hou's (and Ray-Chaudhuri-Xiang's) original motivation for studying this problem.

## Open Questions

1. Is there an analogous result for $s(p, t)$ for $p$ odd?
2. Connections to McFarland Difference Sets?
3. Can we lower the rank any further?
4. Can we use this to say anything regarding $\left(2^{2 a}, 2^{b}, 2^{2 a}, 2^{2 a-b}\right)$ for $b>a$ ?
