Math 350
Spring, 2006

HOMEWORK #3

Do 50 points of the following problems (due 2/3/06).

25 pts. **1** Find a necessary condition on the length \(n \) so that the binary \((n, M, 3)\) code is perfect. What are the conditions for a perfect \(q \)-ary \((n, M, 3)\) code?

25 pts. **2** Let \(a, b \in \mathbb{Z}_p \) for \(p \) a prime: show that \((a + b)^p \equiv a^p + b^p \mod p\). Explain how that can be extended to \((a + b + \cdots + z)^p \equiv a^p + b^p + \cdots + z^p \mod p\). Use this to show that \(x^p \equiv x \mod p \) for every \(x \in \mathbb{Z}_p \).

25 pts. **3** Consider the following matrix:
\[
H = \begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix}
\]

Show that the set of vectors \(u = (u_1, u_2, \ldots, u_7) \) that satisfy \(Hu^T = (000) \) form a binary linear code. How many elements are there in this code? Use properties of the matrix \(H \) to determine the minimum distance of the code (don’t just use brute force).