Quiz 6

Show all work: unjustified answers may receive less than full credit.

1. Find the derivative of the following functions:
 (a) \(f(x) = 3x^2 - 2\cos(x) \)
 \[f'(x) = 6x + 2\sin(x) \]
 (b) \(F(x) = (x^4 + 3x^2 - 2)^5 \)
 \[F'(x) = 5(x^4 + 3x^2 - 2)^4 (4x^3 + 6x) \]
 (c) \(y = \sin(a^3 + x^3) \)
 \[y' = \cos(a^3 + x^3)(3x^2) \]
 (d) \(x^2 + xy - y^2 = 4 \)
 \[
 2x + xy' + y - 2yy' = 0 \\
 y'(x-2y) = -y - 2x \\
 y' = \frac{y - 2x}{x - 2y}
 \]

2. Find an equation of the tangent line to the curve \(y = x + \cos(x) \) at the point \((0, 1)\).
 \[
 y' = 1 - \sin(x) \\
 y'(0) = 1 \\
 y - 1 = 1(x - 0)
 \]

3. Use the definition of the derivative to show that the derivative of \(y = x^n \) is \(y' = nx^{n-1} \). Show where you used the assumption that \(n \) is a positive integer.
 \[
 (x^n)' = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{x^n + nx^{n-1}h + \text{junk}(h^2) - x^n}{h} \\
 = \lim_{h \to 0} \frac{nx^{n-1}h + \text{junk}(h^2)}{h} = nx^{n-1}
 \]

 \text{This equality uses binomial expansion (Pascal's triangle).}