Show all work; unjustified answers may receive less than full credit.

(20pts.) 1. A right circular cylinder is inscribed in a cone with height \(h \) and base radius \(r \). Find the largest possible volume of such a cylinder.

(20pts.) 2. The manager of a 100-unit apartment complex knows from experience that all units will be occupied if the rent is $800 per month. A market survey indicates that, on average, one additional unit will remain vacant for each $10 increase in rent. The cost of operating the complex is \(C(x) = 60000 + 100x \), where \(x \) is the number of units occupied.

 a. Find the demand function, assuming it is linear.

 b. What rent should the manager charge to maximize profit?

(15pts.) 3. Sketch a plot of \(f(x) = x^4 - 4x^3 \) showing all work (you may NOT use your calculator graphing features for this problem).

(15pts.) 4. Find \(f(x) \) if \(f''(x) = x^{-2}, x > 0, f(1) = 0, f'(1) = 3 \)

(15pts.) 5. Use two iterations of Newton's method (calculate \(x_3 \)) to estimate \(\sqrt{31.7} \).

(15pts.) 6. a. Estimate the area under the graph of \(f(x) = \frac{1}{1+x^2} \) from \(x = -1 \) to \(x = 1 \) using four rectangles and right endpoints.

 b. If \(v(t) = \frac{1}{1+t^2} \) is the velocity of a particle, find the distance traveled from \(t = -1 \) to \(t = 1 \).
Maximize Volume of cylinder
\[V = \pi R^2 H \]
\[V = \frac{\pi}{H} \left[(h-H)^2 H \right] \]
\[V' = \frac{\pi}{H} \left[(h-H)^2 + (-2)(h-H)H \right] = 0 \]
\[(h-H)[h-H-2H] = 0 \]
\[H = h, \quad H = \frac{2h}{3} \]

\[V = \frac{\pi}{h} \left[(h-H)^2 \right]^{\frac{1}{3}} \]
\[= \frac{4}{27} \pi r^2 h \]

2. \[M = \frac{810 - 800}{99 - 100} = -10 \]
\[p - 800 = -10(x - 100) \]
\[p = -10x + 1800 \]

(b) \[R(x) = xp = -10x^2 + 1800x \]
\[\Pi(x) = -10x^2 + 1800x - (60000 + 100x) \]
\[= -10x^2 + 1700x - 60000 \]
\[\Pi'(x) = -20x + 1700 = 0 \]
\[x = 85 \Rightarrow p = -10(85) + 1800 = 950 \]

Charge $950 to maximize profit.
3. \(y = x^4 - 4x^3 = (x - 4)x^3 \)
\[y' = 4x^3 - 12x^2 = 4x^2(x - 3) \]
\[x = 0 \text{ crit pts.} \]
\[y'' = 12x^2 - 24x = 12x(x - 2) \]
\[x = 0, 1 \text{ possible infl pts.} \]

4. \(f''(x) = x^{-2} \)
\[f'(x) = -x^{-1} + C \]
\[= -x^{-1} + 4 \]
\[f(x) = -\ln|x| + 4x + C \]
\[O = -\ln|1| + 4(1) + C \]
\[C = -4 \]
\[f(x) = -\ln|x| + 4x - 4 \]

5. \(f(x) = x^5 - 31.7 \)
\[f'(x) = 5x^4 \]
\[x_1 = 2 \]
\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{3}{80} = 1.99625 \]
\[x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.99624 \]
\[\sqrt[5]{31.7} \approx 1.9962358 \]
6. a. \[\frac{1}{4} \left[f(-.5) + f(0) + f(.5) + f(1) \right] \]

\[= \frac{1}{2} \left[\frac{1}{1 + (-.5)^2} + \frac{1}{1 + 0^2} + \frac{1}{1 + (.5)^2} + \frac{1}{1 + 1^2} \right] \]

\[= \frac{1}{2} \left[\frac{31}{10} \right] = \frac{31}{20} = 1.55 \]

b. \[s(t) = \tan^{-1}(t) + C \]

\[s(1) = \tan^{-1}(1) + C = \frac{\pi}{4} + C \]

\[s(-1) = \tan^{-1}(-1) + C = -\frac{\pi}{4} + C \]

distance traveled = change in position

\[= \frac{\pi}{4} + C - (-\frac{\pi}{4} + C) = \frac{\pi}{2} \]