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Abstract

Many recent large-scale distributed computing applica-
tions utilize spare processor cycles of personal computers
that are connected to the Internet. The resulting distributed
computing platforms provide computational power that pre-
viously was available only through the use of expensive su-
percomputers. However, distributed computations running
in untrusted environments raise a number of security con-
cerns, including the potential for disrupting computations
and for claiming credit for computing that has not been
completed (i.e., cheating). This paper presents two strate-
gies for hardening selected applications that utilize such
distributed computations. Specifically, we show that care-
fully seeding certain tasks with precomputed data can sig-
nificantly increase resistance to cheating and to disrupting
the computation. We obtain similar results for sequential
tasks by sharing the computation of � tasks among� � �
nodes. In each case, the associated cost is significantly less
than the cost of assigning tasks redundantly.

Keywords: distributed computation, probabilistic verifica-
tion, ringers

1. Introduction

The past few years have seen the development of dis-
tributed computing platforms designed to utilize the spare
processor cycles of a large number of personal computers
attached to the Internet (see [2, 3, 4, 6, 14, 17] for academic
endeavors, [19] for a list of commercial platforms). The
computing power harnessed by these systems can top sev-
eral petaflops, making them well suited for solving some
SIMD-style parallel computations that previously required
the use of supercomputers. Application domains benefiting
from this technique include DNA gene sequence compar-
isons and protein folding in the biotechnology industry, ad-
vanced graphics rendering in the entertainment industry, ex-
haustive regression and other statistical applications in the

financial industry, some forms of data mining, and Monte
Carlo simulations. Endeavors of a more academic nature
have included searches for new Mersenne primes (GIMPS)
[8] and encryption keys, the Search for Extra Terrestrial In-
telligence Project [18], and the Folding@home project [7].
The typical computation in this setting is easily divisible
into independent tasks small enough to be handled in a few
hours by an average personal computer.

In the common scenario, the supervisor of a distributed
computation platform recruits participants who agree to al-
low the supervisor to execute code on their personal com-
puters, either in exchange for some form of remuneration
(in a commercial setting) or on a voluntary basis. Partici-
pants then download code that serves as the local execution
environment for assigned computational tasks. For a given
computation, participants are chosen, tasks are assigned and
transmitted, and as tasks are completed significant results
are collected by the supervisor. Though task results may be
related, the tasks themselves are independent, so commu-
nication is necessary only between individual participating
computers and the supervisor.

The emergence of these platforms has facilitated access
to supercomputer-like processing speeds and enabled com-
putations that would previously have been impractical. Pro-
viding assurance levels for results is difficult because the
results are obtained by executing code in untrusted environ-
ments. Concerns include the potential for participants to
intentionally or unintentionally corrupt results, and for par-
ticipants to claim credit for work not completed. Validity of
results can often be achieved by redundantly assigning tasks
to multiple participants, but such an approach is inefficient
and expensive — the processor cycles required to do so are
the fundamental resource of firms providing the distributed
computing service.

While there is a large body of literature concerning the
security of distributed systems, there are few studies dealing
with the specific type of system considered here. Golle and
Mironov [9] consider computations involving inversion of a
one-way function (IOWF). They present several protection
mechanisms and use game theoretic arguments to measure



the efficacy of their strategies. Golle and Stubblebine [10]
present a security based administrative framework for com-
mercial distributed computations. Monrose, Wyckoff, and
Rubin [13] propose instrumenting host code in order to gen-
erate lightweight execution traces that can be used to verify
program execution.

Some of the work presented here extends the methods
developed in [9] for the class of computations involving
inversion of a one-way function. An IOWF computation
seeks the pre-image �� of a distinguished value �� under a
one-way function � � � � �. IOWF computations consist
of an exhaustive search of the domain �, with each partici-
pating host assigned a portion of the domain. In an unmod-
ified IOWF computation, there is a strong incentive for a
malicious participant to claim credit for work not completed
because only a single subdomain will contain ��, and the
probability that any single participant is assigned this sub-
domain is low. Golle and Mironov’s solution is to seed each
task with ringers, images of randomly chosen elements of
the corresponding subdomain. Participants are instructed
to return any pre-image that maps to a ringer. This basic
strategy is augmented in several ways (e.g., by varying the
number of ringers in each subdomain) in order to achieve
varying levels of assurance.

Our first strategy extends this basic ringer mechanism to
more general classes of applications, including optimization
and Monte Carlo simulations. Security is achieved by care-
fully choosing ringers so that they remain indistinguishable
from genuine significant results. This is a crucial property,
since any participant who recognizes the ringers planted in
their tasks can circumvent the ringers scheme. Our second
strategy addresses the problem of securing sequential appli-
cations. In a sequential application, the values of a func-
tion � computed during a task are dependent on the values
previously computed during that task. Typically, a sequen-
tial task consists of evaluating the elements of the sequence
�� � ������� beginning with a single input value ��. We
use the term hardening because neither of these strategies
guarantee that the resulting computation returns a correct
result, nor do they prevent an adversary from disrupting a
computation. Instead they significantly increase the likeli-
hood that abnormal activity will be detected.

The remainder of the paper is organized as follows. In
Section 2 we present our model of the distributed compu-
tations and platforms under consideration. Sections 3 and
4 cover strategies for hardening non-sequential and sequen-
tial computations. We discuss related work in Section 5 and
present conclusions in Section 6.

2. The model

We consider parallel computations in which the primary
computation, the job, is easily divided into tasks small

enough to be solved by a PC in a “reasonable” amount of
time (typically on the order of several hours of CPU time).
Individual tasks are independent of one another, and con-
sist of one or more operations. Some jobs require tasks that
consist of relatively few operations, each of which takes a
relatively long time to complete, while others require tasks
consisting of a large number of shorter operations. Regard-
less, the key characteristic of an operation is that it is the
smallest independent unit of job execution. As an exam-
ple, searching for primes typically requires long operations,
where an operation consists of determining the primality of
a single candidate. In this case, a task might consist of only
a single operation. As a contrasting example, searching for
a DES encryption key requires much smaller operations —
the test of each candidate key is a single operation, and the
corresponding task may consist of hundreds of thousands
of operations. Hence, the granularity of a job is determined
largely by the characteristics of the associated operations.

The computing platform consists of a trusted central con-
trol server or server hierarchy (which we denote by the blan-
ket term supervisor) coordinating typically between ��� and
��� personal computers in a “master-slave” relationship.
These slave nodes, or participants1, are assigned tasks by
the supervisor. Participants download code, typically in the
form of a screen saver or applet, that serves as the local ex-
ecution environment for tasks. Because tasks are indepen-
dent, communication required for a computation is neces-
sary (and allowed) only between individual participants and
the supervisor. Participants receive remuneration, in one of
a variety of forms, for completing their assigned task.

Formally, a job consists of the evaluation of a function
or algorithm � � � � � for every input value � � �.
Tasks are created by partitioning � into subsets ��, with
the understanding that task �� will evaluate � for every input
� � ��. In addition to a subset of the data space, each � � is
assigned a filter function 	� with domain 
 ���, the power
set of �, and range 
 �������, where ����� � ����� �� �
���. For � � ��, ���� is a significant result if and only
if ���� � 	��������. Generality in the definition of 	� is
necessary for situations in which the significance of a com-
puted value is relative to the values of � at other elements
of ��. For example, the filter function for a task in a trav-
eling salesperson computation might specify that a route is
significant if it is among the best five cycles computed.

In a non-sequential computation, the computed values of
� in a task are independent of one another. In a sequential
computation, computed values of � are dependent on previ-
ously computed values of � . Typically, a sequential task is
given a single data value �� and asked to evaluate the first �
elements of the sequence �� � ������, where �� is the �th

1We use the term participant to denote both the nodes and their own-
ers. The specific meaning of a particular usage will be apparent from the
context.



order composition of the function � , �� � � Æ � Æ � � � Æ �� �� �
�

.

We assume the existence of one or more intelligent
adversaries. An adversary possesses significant technical
skills by which he or she can efficiently decompile, ana-
lyze, and/or modify executable code as necessary. In par-
ticular, the adversary has knowledge both of the algorithm
used for the computation and of the measures used to pre-
vent corruption. Each adversary will intentionally attempt
to disrupt the overall computation in one of three ways:

� the adversary attempts to cheat, i.e., tries to obtain
credit for work not performed;

� the adversary intentionally returns incorrect results;

� the adversary intentionally fails to return significant re-
sults.

A single adversary may repeatedly attempt to disrupt the
computation as results are (incorrectly) reported and new
tasks assigned. Additionally, we assume that collusion
among multiple adversaries is possible. Provided the num-
ber of colluding adversaries is small relative to the num-
ber of participants, the solutions presented in this paper are
suitable for hardening computations. If the proportion of
adversaries is large, the validity of results returned by a dis-
tributed computation is in jeopardy regardless of the strat-
egy used (unless the supervisor reverts to verification by re-
computing the results).

An adversary may be motivated to disrupt the computa-
tion for one of several reasons. If participants receive some
form of recognition (e.g., distinction as a top contributor of
processing hours as in SETI@home [18] or Folding@home
[7]) in exchange for processor time, an adversary may at-
tempt to cheat, as defined above. If instead participants
receive monetary remuneration, the motivation to cheat is
greater still. An adversary may be motivated to return in-
correct results if, for example, the adversary is a business
competitor of the supervisor’s firm. In this case, the ad-
versary wants to disrupt the computation only if he or she
can guarantee not being caught (for fear of severe conse-
quences). Finally, malicious intent alone, evidenced by the
abundance of hackers and viruses propagating throughout
the Internet, is sufficient motivation for an adversary to re-
turn incorrect results or to not return significant results.

Attacks that result from compromises of data in transit
are beyond the scope of this paper — we assume the in-
tegrity of such data is verified by other means. In addition,
we do not consider attacks that result from the compromise
of the central server or other trusted management nodes.

3. Hardening non-sequential computations

Golle and Mironov’s basic ringer strategy for IOWF
computations works as follows. Before the data for a task is
transmitted, the supervisor chooses � uniformly distributed
random values ��
 ��
 � � � 
 �� from ��, and computes the
corresponding images. The participant is given the set
� � ������
 �����
 � � � 
 �����
 ��� and instructed to re-
turn to the supervisor any element of � � that maps onto an
element of �.

Our extension of this strategy is to plant each portion � �

of a task’s data space with values �� such that the following
Non-Sequential Computation Hardening Properties hold.

1. The supervisor of the computation knows ��� �� for
each �.

2. Participants cannot distinguish the �� from other data
values, regardless of the number of tasks a participant
completes.

3. Participants do not know the number of � � in their data
space.

4. For some known proportion of the � �, ����� is a signif-
icant result. This ensures that the supervisor has some
indication of whether each participant has actually per-
formed the assigned work.

5. It is at least as easy to implement the modification to
the computation than to redundantly assign tasks.

Additionally, the following property is desirable, but not
necessary.

6. The same set of �� can be used for many different par-
titions of the data space so that the effort of computing
the ����� is amortized over a large number of tasks.

A participant �� will not be paid unless all ����� are returned
for all �� � ��. The participant cannot be certain all �����
are returned unless the entire task is completed. Therefore,
given a set of �� satisfying the properties above, a rational
participant will complete all of the work assigned.

3.1. A practical consideration

Meeting the non-sequential hardening properties can be
difficult in practice because the �� are indistinguishable
from other data only if they generate results that are truly
significant to the computation. Any result can be declared
significant by the supervisor, but such a result will not fool a
participant who understands the computation. For example,
a supervisor in a traveling salesperson computation might
stipulate that any circuit with weight 100 is deemed signif-
icant. However, a participant generating a large number of



circuits with weight less than 100 will know that ringers
have been artificially planted, and can return the cycles
corresponding to ringers while withholding better results.
Finding genuinely good ringers involves either performing
some sort of approximation algorithm or precomputing a
large part of the computation. In the former case, the ap-
proximation algorithm will be available to the participants,
so they can determine which values are likely to be ringers.
In the latter case, having the supervisor perform significant
portions of the computation means losing much of the ad-
vantage gained by parallelism.

The problem is made more difficult because ringers that
appear to be “hidden” in theory can be very visible in prac-
tice. In theory the supervisor of an IOWF computation
seeking to find the inverse image �� of �� under the func-
tion � can generate ringers by arbitrarily choosing elements
��
 ��
 � � � 
 �� from the domain of � and sending a partici-
pant the set ������
 �����
 � � � 
 �����
 ���. In practice this
can be difficult to apply. As a specific example, consider the
following two variations on the search for a DES encryption
key.

Variation 1

Each task is given plaintext
 , ciphertext�, and a
portion �� of the key space �. The participant is
then instructed to compute the set ����
 � � � �
���, where � is a DES encryption function, and
return the key �� such that ����
 � � �, if found.

Variation 2

Each task is given ciphertext � and a portion � �

of the key space �. The participant is then in-
structed to compute the set ������ � � � ���,
where� is a DES decryption function, and return
any key that generates plausible plaintext.

Augmenting Variation 1 using the basic ringer strategy is
straightforward. For each task ��, the supervisor chooses
keys ��
 ��
 � � � 
 �� � �� (the ringers) and precomputes
the ciphertexts �����
 �
 ����
 �
 � � � 
 ����
 ��. The set
� � �����
 �
 ��� �
 �
 � � � 
 ����
 �
 �� is sent to the par-
ticipant, who is instructed to return any key that maps 

to a ciphertext in �. In this situation, an adversary can-
not distinguish the planted data values. Moreover, finding
ringers unique to each portion � � of the key space is trivial,
so the strategy is effective even in the presence of collu-
sion. In order to implement the ringer strategy for Varia-
tion 2, however, the supervisor must find keys � � such that
������ generates plausible plaintext. This can be difficult,
and may even be more expensive than assigning tasks re-
dundantly. In addition, if the ringers are to remain hidden
in the face of colluding adversaries, the supervisor is faced

with the daunting task of finding keys in each � � that de-
crypt � to plausible plaintext. Herein lies the subtlety. In
theory, finding ringers for IOWF computations should be
straightforward; in practice, however, it can be prohibitively
expensive.

3.2. Hardening optimization problems

Several of the applications mentioned in Section 1 are
by nature optimization problems. These include traveling
salesperson problems, certain gene sequencing problems,
and exhaustive regression. Fortunately, for these problems
one can choose ringers that meet the non-sequential harden-
ing properties by assigning a small proportion of the tasks
redundantly and then using the significant results from these
to seed the remaining tasks.

Formally, we consider a computation attempting to op-
timize a function � on a domain � to obtain a single opti-
mizing value � or instead some set of order statistics for � .
The basic algorithm is as follows.

1. Designate a proportion � of tasks as the initial distri-
bution.

2. Distribute each task �� in the initial distribution to two
participants, �� and ��, selected at random.

3. When values are returned from the initial distribution,
check for each � the results returned by � � against
those of �� for correctness. If the results returned by
�� and�� do not match, discard the results (and, in the
same manner, further test �� and �� to identify which
is returning incorrect results).

4. Retain the � best results and use them as ringers for
the remaining tasks to verify the work of other partici-
pants.

5. Distribute the remaining tasks to other participants.

Note that if the two selected participants, �� and ��, in
the initial distribution are colluding adversaries, the super-
visor will be unable to determine incorrect results initially.
However, provided the proportion of adversaries in the par-
ticipant pool is small, the supervisor will eventually deter-
mine inconsistency in the results. An honest participant,� �,
not in the initial distribution will eventually provide (good)
results that do not match results from the initial distribution.
The supervisor then is faced with one of two scenarios: ei-
ther �� is an adversary, or �� and �� are colluding adver-
saries. With modest effort, the supervisor can determine
which scenario is present. Moreover, random selection of
�� and �� should reduce the likelihood that the two partic-
ipants are colluding adversaries.



Table 1. The probability of obtaining at least
� of the best � results in the first fraction � of
the data space

� � � Probability
50 8 0.25 0.9547

150 5 0.1 � 
 �� � ����� � ����	�
10000 100 0.02 � 
 �� � ���
�� � �

The probability2 that at least � of the best � results will
be obtained from the initial distribution of tasks is given
by

��

���

�
�

�

�
���� 	 �����, assuming that both � and � are

much less than the size of the data space, and that the pro-
portion of incorrect results is small. Values for some com-
binations of �, �, and � are shown in Table 1. In particular,
note that it is a virtual certainty that 100 of the top 10000
results will be obtained if only 2% of the tasks are contained
in the initial distribution. For a traveling salesperson prob-
lem with 50 cities, or for an exhaustive regression on 32
variables, the best 10000 results represents better than the
99.99999th percentile.

The filter function 	 must be carefully specified to en-
sure ringers remain both hidden and significant. If an ad-
versary is able to determine the ringers, the adversary can
disrupt the computation by returning those ringers while at
the same time omitting better results or including incorrect
results. Consider a traveling salesman problem. If the initial
distribution returns five good circuits, ��
 ��
 � � � 
 ��, with
lengths ���, ���, ���, ���, and ��
, then 	 can be ex-
pressed in three general forms.

� Return any circuit whose length is ���, ���, ���, ���,
��
, or less than ���.

� Return the ten best circuits you find.

� Return any circuit whose length is less than ���.

In the first case, the participant is given information that
can be used to identify the ringers. In the second, a par-
ticipant cannot identify the ringers, but if a particular data
subspace contains many good circuits it may turn out that
some ringers are not significant. As a result, the supervisor
can verify the correctness of the returned circuits, but has no
measure of assurance that all circuits in this task have been
evaluated. The last form leaves ringers hidden and guar-
antees their significance, though it may also lead to excess
results being returned. Thus the exact cutoff used must be
tuned to specific applications.

2Technically, this probability should be adjusted to reflect the expected
number of incorrect results returned in the initial distribution, which we
expect will be relatively small.

This strategy is advantageous because no precomputing
is required on the part of the supervisor and the computa-
tion is hardened at a fraction of the compute cost of simple
redundancy. Additionally, the ringers obtained in the initial
distribution can be used to seed the remaining tasks, free-
ing the supervisor from having to compute ringers for each
individual task. The strategy is collusion resistant because
even a modestly small number of ringers can be combined
in enough ways to reduce the probability that colluding par-
ticipants (or participants who complete multiple tasks) will
be able to determine the ringers. Moreover, as additional
good results are obtained from the remaining tasks, these
results can be used to seed any further tasks that may be
assigned.

The disadvantage of this method is that the time cost of
an individual computation is at least doubled, assuming that
all tasks require approximately the same amount of time to
complete, because tasks are distributed in two waves rather
than all at once. By running multiple jobs concurrently,
however, overall job throughput rates can be reduced to a
factor of � 
 � times unmodified job throughput rates.

3.3. Hardening Monte Carlo simulations

Monte Carlo simulation (see [11]) is a technique that
employs random numbers to solve problems in which time
plays no substantive role. The technique involves simulat-
ing a random experiment a large number, say � , of times
and recording the number of times, say �, that an event of
interest occurs. The law of large numbers asserts that if �
is large, the ratio ��� should be a good point estimate of
the probability of the event occurring.

As a simple example, consider the problem of finding the
area of a region � contained in the square � � ��
 ��
 ��
 ��
in the ��-plane. Using Monte Carlo simulation, one can
choose � points from a uniform distribution in � , and
count the number of points, �, that lie in �. The approxi-
mation for the area would then be ��� .

This example is not well suited for a large scale dis-
tributed computation, but serves as an illustration of how
the seeding technique can be applied to Monte Carlo simu-
lations in general. The supervisor chooses a particular im-
plementation for the random number generator (ensuring
portability) and some number � of seeds. Before any tasks
are assigned, an initial run of ��� replications is computed
using one of the seeds �� chosen arbitrarily. This seed be-
comes the ringer for the remaining task assignments. Par-
ticipants are then sent the code for the generator along with
� seeds (including ��), and are instructed to run ��� repli-
cations with each of the seeds, returning the area estimate
corresponding to each seed. An adversary cannot determine
which of the � seeds is the ringer, and therefore cannot re-
turn results for fewer than � seeds without raising suspicion.



The returned results can be checked for validity using the
initial run generated with ��. In effect, the supervisor has
managed to provide a measure of assurance while perform-
ing only ��� of the work.

By their very nature, Monte Carlo simulations provide a
form of redundancy because, provided the number of repli-
cations is sufficiently large, each task should return an es-
timate similar to the other tasks. However, seeding as de-
scribed here augments the redundancy by enhancing the re-
sistance to collusion.

4. Hardening sequential computations

As described in Section 2, in a sequential computation a
task �� is given a single data value �� along with the func-
tion � and asked to evaluate the first �� elements of the
sequence �� � ������, where �� is the �th order composi-
tion of the function � and �� is typically very large.

Unlike a non-sequential task, in which the participant
computes the value of a function on several independent in-
puts, the intermediate results in a sequential computation
are highly dependent. Thus, seeding the data is impractical.
Moreover, in many cases the validity of a returned value
can only be checked by recomputing the entire task. The
Great Internet Mersenne Prime Search (GIMPS) [8] con-
ducted by Entropia.com provides a case study. The �th
Mersenne number, denoted��, is defined by�� � ��	�.
A Mersenne number can only be prime if � is prime 3,
but the primality of � is not a sufficient condition for the
primality of �� (e.g., ��� is not prime). The Lucas-
Lehmer Theorem [5] states that �� is prime if and only
if ���	 �� � � (mod ��), where

��� 
 �� �

�

 � � �

����
�
	 � � � �
 �
 � � �

Thus a GIMPS task consists of checking a single candi-
date. Considering that the most recent GIMPS success was
the discovery of the Mersenne prime ��������	�� 	 �, the
number of iterations required in such a task is significant.

We now propose a new strategy for hardening sequen-
tial computations that provides probabilistic verification. In
[20], Syverson briefly introduces the idea of probabilis-
tic verification of a sequential computation by dividing the
computation into smaller pieces. However, the strategy we
propose differs in that the supervisor is not required to pre-
compute or recompute results. Our strategy for sequential
computations shares the work of computing� tasks among
� participants, ��
 ��
 � � � 
 �� , where � � � is a very
small proportion of the total number of participants in the
computation. In addition, we assume that each of the �
tasks requires roughly � iterations. The algorithm is as fol-
lows.

3If� divides �, then ��� � �� divides ��� � ��.

1. Tasks are divided into � segments, the first � 	 � of
these consisting of  � ��� iterations, and the last
containing a variable number of iterations (since the
number of iterations for each task may not be exactly
�).

2. Each participant �� is given an initial value ��� and
instructed to compute the first  iterations using that
value.

3. When each of the �� has completed  iterations, it
stops and returns the last value computed, �������, to
the supervisor.

4. The supervisor checks the correctness of the �������
corresponding to redundantly assigned subtasks.

5. The supervisor permutes the � distinct values in the
set

��������
 �������
 � � � 
 ��������

and assigns these values to the � participants as initial
values for the next segment.

6. The process is repeated until all � segments have been
completed.

If the redundancy factor ��� is less than 2 and each
subtask is assigned to no more than two nodes4, then in
the absence of collusion, the probability of a cheater be-
ing caught in a given segment is �
����

�
. (For example,

if � � 	 and � � 
, and nodes 1–6 are assigned tasks
1–4 according to node 1 � task 1, node 2 � task 2,
node 3 � task 3, node 4 � task 4, node 5 � task 2,
node 6 � task 4, then the work of nodes 2 and 5 are
checked against each other, as is the work of nodes 4 and 6.
Thus four of six nodes are checked. In general, ���	�� of
the nodes will have their work checked.) Thus the probabil-

ity of a cheater being caught in � segments is �	
�
����
�

��
.

If a participant cheats in a fraction � of the segments, then

the probability of being caught decreases to �	
�
����
�

���
.

Table 2 provides examples for various input parameters of
the probability of a cheater being detected.

Note for the probabilities given here, if a cheater cheats
exactly ! times then � � !�� so the probability of being

caught is given by �	
�
����
�

�	
. Note that the last equation

is not independent of�; in fact � is an upper bound for!. In
order to have at least a probability
 of catching the cheater,
one needs

� �
��

� 
 ��	 
 �
�

�

�

A small value of � (thereby limiting !) means that more
redundancy will be required for a given level of security.

4We assume ��� � �; otherwise, simple redundancy requires less
work than our approach.



Table 2. Probabilities of catching a cheater
cheating

nodes (�) tasks (� ) segments (�) frequency (�) 
 (cheater caught)
5 4 5 1 0.9222
5 4 10 1 0.9939
5 4 10 .2 0.64
5 4 20 .2 0.8704

10 9 10 1 0.8926
10 9 10 .2 0.36

Table 3. Redundancy factors for various 
 values
! � �


 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
��� 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0

! � �


 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
��� 1.03 1.06 1.09 1.13 1.17 1.23 1.29 1.38 1.52 2.0

Table 3 shows the redundancy factors required for ! � �
and ! � � with various 
 values.

The primary advantage of this strategy is that far fewer
task compute cycles are required than for simple redun-
dancy. Similar to our seeding strategy for non-sequential
tasks (except Monte Carlo simulations), there is no need
for the supervisor to precompute any values. The method
is also collusion resistant (unless a supervisor is unfortu-
nate enough to select a group consisting entirely of collud-
ing nodes) because the returned results are permuted and
reassigned. In addition, the method is tunable — a super-
visor can set security levels by varying the redundancy fac-
tor. Finally, the technique can be applied to non-sequential
computations as well.

The primary disadvantage of the scheme is an increased
workload for the supervisor, who experiences an increase in
both coordination and communication costs due to the node
synchronization requirements. The need for synchroniza-
tion also increases the time cost of a computation, which
can be especially expensive if many of the volunteer PCs
are connected to the Internet via modems or operate spo-
radically because owners use the machines for their own
purposes. As more PC owners move to high speed 24/7
connectivity, synchronization costs will likely be less of an
issue (e.g., jobs can be run late at night). From a security
standpoint, the strategy does not protect well against a ma-
licious adversary who decides to cheat just once. More-
over, the amount of damage a cheater can do is magnified,
because incorrect results that are not caught become input
values in subsequent segments of the computation.

5. Related work

The present problem relates to the validation of code
execution, so its historical roots lie in the areas of result-
checking and self-correcting programs. Wasserman and
Blum [22] provide an excellent survey of the results in this
area. While of theoretical interest, it is not directly appli-
cable here because much of the work is limited to specific
arithmetic functions, and checking is limited to verifying
function behavior on a single input, rather than on all inputs.
Result checkers for general computations remain elusive.

Several recent implementations of distributed computing
platforms address the general issues of fault-tolerance [2, 3,
4, 6, 14, 17], but assume a fault model in which errors that
occur are not the result of malicious intent. The solutions
presented are typically a combination of redundancy with
voting and spot checking. In a preliminary investigation of
the problem of fault-tolerant distributed computing, Minsky
et al. [12] found that replication and voting schemes alone
are not sufficient for solving the problem. They assert that
cryptographic support is required as well, but only sketch
the methods they envision for solving this.

There have been a number of efforts aimed at protecting
mobile agents from malicious hosts. Vigna [21] proposes
using cryptographic traces to detect tampering with agents.
Specifically, an untrusted host that is providing the execu-
tion environment for a mobile agent is required to generate,
and for a short while store, a trace of the agent execution.
Upon completion of the execution, the untrusted host re-
turns a hash of the trace, and if requested by the originating



host, the complete trace. This of course means that verifica-
tion of the correct execution is provided by having the code
executed twice, once on the trusted node, and once on the
untrusted node. In addition, as Vigna notes, even if traces
are compressed, they can be huge. While there are mech-
anisms that can be used to decrease the size of traces, the
communication overhead remains far too great to be practi-
cal for a metacomputation.

Sanders and Tschudin [16] discuss the idea of provid-
ing security for mobile agents by computing with encrypted
functions [1, 15]. The idea is to use an encryption function
� to encrypt the code for a procedure � , obtaining a sec-
ond function���� that provides little information about� .
An untrusted second party then executes ���� on a given
input � and returns the result, which is then decrypted to
obtain ����. The difficulty here lies in creating encryp-
tion functions that map executable procedures to executable
procedures. There are other requirements for �, including
resistance to chosen plaintext attacks, ciphertext only at-
tacks, and other attacks. Abadi and Feigenbaum [1] present
an encryption function for a general boolean circuit, but
their method requires a great deal of interaction between
the communicating parties. Sanders and Tschudin add the
constraint that the encryption function should not be inter-
active, since frequent communication between an agent and
the server from which it originated effectively eliminates
the benefits gained from agent autonomy. The methods they
present apply to procedures that evaluate restricted classes
of polynomials and rational functions. Because no methods
are presented for more general procedures, however, and
because it is not even known whether such encryption func-
tions exist, their methods, though interesting, present prac-
tical difficulties.

In addition to the work of Golle and Mironov [9], two
other works focus specifically on the issue of securing dis-
tributed metacomputations. Golle and Stubblebine [10]
present a security based administrative framework for com-
mercial distributed computations. Their method, like those
presented here, relies on selective redundancy to increase
the probability that a cheater is detected. They provide
increased flexibility, however, by varying the distributions
that dictate the application of redundancy. Efficacy is mea-
sured by first developing a game theoretic model based on
estimates of the participant’s utility of disrupting the com-
putation and cost of being caught defecting, and then deter-
mining distribution parameters that guarantee that, for every
participant involved, the expected value of defecting from
the computation is less than or equal to zero. The differ-
ences between their methods and those presented here lie in
the particulars of how redundancy is applied and with the
granularity of redundancy.

Monrose, Wyckoff, and Rubin [13] deal with the prob-
lem of guaranteeing that a host participates in the compu-

tation, assuming that their goal is to maximize their profit
by minimizing resources. The method involves recording
traces of task execution. Specifically, task code is instru-
mented at compile-time so that it produces checkable state
points that constitute a proof of execution. On completion
of the task, the participant sends results and the proof to
a verifier, which then runs a portion of the execution and
checks it against the returned state checkpoints. However,
this approach requires the undesirable need to recompute
results.

6. Conclusions

We have presented two strategies for hardening large-
scale distributed computations against malicious behavior
by participating hosts. The first, applicable to many non-
sequential computations (such as optimization problems),
requires seeding task data with ringers in a manner that pre-
vents participants from being able to distinguish the ringers
from genuinely significant results. The second strategy, ap-
plicable to sequential computations (such as GIMPS), ad-
vocates sharing the work of computing � tasks among
� � � nodes. Relative to an unmodified task, a small
increase is incurred in the average execution time of a task
modified to execute with our strategies. However, the over-
all computing costs are significantly decreased compared to
redundantly assigning entire tasks. In addition, both strate-
gies provide supervisors protection against participants who
fail to complete assigned tasks, and provide a measure of
assurance of the validity of returned results.
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