
Introducing Computer Science in an
Integrated Science Course

Barry Lawson
blawson@richmond.edu

Doug Szajda
dszajda@richmond.edu

Lewis Barnett
lbarnett@richmond.edu

Department of Mathematics and Computer Science
University of Richmond

Richmond, VA 23173-0001 USA

ABSTRACT
This paper describes our implementation and experience of
incorporating computer science concepts into a team-taught,
first-year interdisciplinary course for prospective science ma-
jors at the University of Richmond. The course integrates
essential concepts from each of five STEM disciplines: biol-
ogy, chemistry, computer science, mathematics, and physics.
Including computer science in this course faces three primary
challenges: few of the students have any CS background;
the time devoted to CS instruction is reduced compared to
a traditional introductory CS course; and the spirit of the
course requires the CS material to be highly integrated with
the other disciplines. Here we discuss our experience from
three-plus years of offering the course and its impact on the
major/minor pool of students in our own discipline.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
computer science education, curriculum

Keywords
CS1; Integrated Science

1. INTRODUCTION
At the University of Richmond, faculty from the disci-

plines of biology, chemistry, computer science, mathematics,
and physics have designed an innovative year-long course
with the intent of more fully integrating essential concepts
from each of these science, technology, engineering, and math-
ematics (STEM) disciplines. The course, named Integrated
Quantitative Science (IQS), spans two academic semesters,
and each semester the course is team-taught by five faculty,
one from each of the disciplines above.

The overall goals of this course include: (a) increasing un-
derstanding by students of essential disciplinary and inter-
disciplinary concepts; (b) increasing understanding by fac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

ulty of interdisciplinary concepts and connections; (c) in-
creasing the ability of faculty to develop future courses that
draw on and integrate material from multiple scientific dis-
ciplines; (d) increasing the number of undergraduates who
participate in cross-disciplinary academic and research op-
portunities at the university and beyond; and (e) allowing
faculty to bring new material, from a variety of disciplines,
into existing courses within their own disciplines.

The course is open to first-year students only. Students
apply for admission to the course, and preference is given to
those students who meaningfully express a strong yet broad
interest in the sciences and in scientific exploration. Student
load for the course is equivalent to two courses per semester
for each of the first two semesters. At the end of the two
semesters, students will have received sufficient background
to allow them to move into a major of their choice in any of
the STEM disciplines listed above, and they receive general-
education credit for the natural science and symbolic reason-
ing fields of study at our university.

To facilitate the necessary integration, we selected a uni-
fying theme for each semester that allowed all five disciplines
to be involved and that leveraged the expertise of the par-
ticipating faculty. For the first semester, the current theme
is antibiotic resistance; for the second semester, the current
theme is cell signaling. As much as possible, each semester
is structured so that no single discipline receives a large con-
tiguous block of lecture time — the challenge is to balance
a sense of integration with a sense of topic continuity.

In this paper, we focus on implementation details and our
experience with this course from the computer science per-
spective, referring the interested reader to [6] for a more
broad treatment of the course, constraints, and outcomes.
When initially designing the IQS course, all parties involved
felt strongly that computer science should be included. In
addition to recognizing CS as an important field of study in
its own right, there is clear recognition of the impact CS has
in research areas of each of the other disciplines. Although
none of the science majors at our university currently re-
quires CS, many of our science colleagues understand the
importance of strong CS skills for their own research and
for their students. We see this course as an opportunity to
present early the discipline of computer science to many sci-
ence students who might not otherwise take a CS course (or
might only take one very late in their course of study).

However, including CS does present challenges:

• Computer science is but one of five disciplines to re-
ceive coverage in this course. Our experience indicates

that it is more difficult to present computer science
effectively when, in the same course, the students’ re-
sponsibilities and time are divided. Indeed, the total
amount of time and the frequency at which the stu-
dents focus on CS topics is significantly reduced com-
pared to a traditional CS1 course.

• Few of the students who have taken the course have
had any background in computer science. The same
is not true for the other four disciplines. Therefore,
while our science and mathematics colleagues can try
to move quickly into more advanced material, we in
CS must start at square zero1.

• In the integrated spirit of the course, we feel it is very
important to include applications and projects which
are meaningful within the theme of each semester and,
as much as possible, are highly integrated with other
of the disciplines. The primary challenge in this regard
is to choose topics that are sufficiently meaningful yet
accessible by students new to CS.

2. IQS: CS INTEGRATION
Our IQS course is split across two motivating topics in

consecutive semesters, and, especially from the CS view-
point, there is an unfortunate gap that occurs with the win-
ter break. Because most of our students are new to com-
puter science—in terms of learning a programming language
and thinking algorithmically—we believe the students ben-
efit from frequent, smaller assignments, especially initially.
The winter break presents a period of four weeks during
which the students are unlikely to be actively working.

Accordingly, our approach is to introduce most of the
traditional CS1 concepts within the framework of the first
semester of IQS: basic computer organization, variables, as-
signment and expressions, control structures, loops, meth-
ods and parameter passing, fundamental object-oriented pro-
gramming, arrays, and file I/O. These concepts are pre-
sented using projects and assignments that fit within the
antibiotic-resistance theme of the first semester. Our lan-
guage of choice is Java, to maintain consistency with our
standard CS1 and CS2 courses.

We then use the second semester of IQS to reinforce those
fundamental concepts through applications and assignments
that relate to the second-semester theme of cell signaling.
Students understand from the beginning that, because we
are including five disciplines into the time equivalent of four
courses, at the conclusion of the course they may need to
pick up some small amount of additional material on their
own before moving into subsequent courses within a partic-
ular discipline. So in the second semester, we also try to in-
clude any remaining CS1 concepts (more advanced OOP, re-
cursion, searching, and sorting), but a full coverage of these
remaining topics has not always appeared in the three offer-
ings of this course.

2.1 First Semester Topics and Projects
The first semester of IQS currently focuses on the theme

of antibiotic resistance. We use projects on agent-based sim-
ulation, Monte Carlo methods, and DNA sequence compar-
ison to motivate the presentation of particular CS1 topics.

1As computer scientists, we feel compelled to start here
rather than at square one.

Agent-based Simulation.
The first full CS project is an agent-based simulation model

of antibiotic resistance. In this model, students implement
methods which use strings of binary characters to model the
binding sites of antigens, antibodies, and antibiotics [15].
Students also write a simple class to represent an agent in
the model, its corresponding characteristics (e.g., spatial lo-
cation, strings for binding sites), and its necessary behaviors
(e.g., immune response, antigen mutation).

The CS1 concepts necessary for implementation of this
project include variables, strings, conditional execution, for-
loops, writing and using methods, and elementary OOP (us-
ing objects and writing a new class). We use roughly the
first half of the first semester to introduce these topics in
small, manageable chunks. For example, in the CS lessons
during the first two weeks of class, we introduce variable
declarations and assignments followed by strings and string
methods through simple written homework and program-
ming exercises. In the next two weeks of class, we introduce
conditional execution and for-loops, again through manage-
able assignments similar to those in a typical CS1 course but
with IQS-specific contexts. We then progress to writing a
simple agent class, which the students later extend for use in
the simulation model. Implementation of this first project
is not due until slightly over halfway through the semester.

Admittedly, the entire agent-based model is not one that
first-year students can reasonably complete on their own.
We provide most of the framework for the interactive model,
including code for a front-end GUI and the simulation en-
gine. The students must implement an agent class which
can then plug into the provided simulation framework.

Beyond writing the code for the agent class, we require
the students to use their model once implementation is com-
plete. We believe this is very important as the students see
early the idea of CS as an area of study unto itself, not
simply as a field of potential tools for the other sciences.
Using the GUI, students are able to perform experiments
by changing various parameter values (e.g., probability of
infection, antibiotic string length) and evaluating the result
on the number of infected, uninfected, and living agents over
time. A screen shot of the GUI is provided in Figure 1.

Figure 1: Agent-based simulation model GUI (L)
and neural network character classifier GUI (R)

Monte Carlo Methods.
The next CS project involves a Monte Carlo approach for

determining low energy structures of antibiotic molecules,

integrating CS with chemistry and mathematics. Motivation
for this project lies in determining stable (low energy) con-
formations of molecules, since they are more likely to occur
in nature than higher energy conformations. Steric crowd-
ing (when atoms are closer to one another) generally leads
to a higher energy state due to repulsion among the atoms.
Hence, the energy of a molecular conformation is most af-
fected by modifying dihedral angles within the molecule.

One approach for searching the energy state space is to
generate an ensemble of different conformations of a given
molecule by varying random dihedral angles, and then mini-
mizing that ensemble to identify only the low energy confor-
mations. Generating the ensemble is a natural application
of the Monte Carlo technique. Given a molecular conforma-
tion, select at random a number of dihedral angles to vary,
select at random the actual angles to vary, and then select at
random the values for the angles. Repeat this process many
times, adding each new conformation to the ensemble.

Again, we provide some framework for the students: classes
for representing a conformation and an ensemble, and tools
for reading and writing appropriate file formats. Students
should be capable of writing the classes for a conformation
and an ensemble, but we provide them because of time con-
straints. We use a straightforward file format (Z-matrix) for
representing a conformation, providing an additional con-
text for the chemistry professor to cover bond lengths, bond
angles, and dihedral angles, and allowing the CS professor
to introduce the algorithmic process of file I/O.

Integration with mathematics occurs via discussion of min-
imization techniques (e.g., gradient descent) during lecture.
Students understand the mathematics behind minimization
of the ensemble, but do not implement the minimization step
within the CS project, again because of time constraints.
Rather, we have the students use research-grade molecular
modeling software to visualize the conformations generated
by their own code, and then to conduct a full Monte-Carlo
minimization process (generate and minimize an ensemble,
and visualize the results).

There are no new CS1 concepts required for this project
(requiring primarily looping, random number generation,
and use of objects), providing a means of reinforcing ideas
in a different context. In our allotted lesson times during
this period, we cover data representation, low-level program
execution, and the overall concept of Monte Carlo methods.

DNA Sequence Comparison.
The final project in the first semester integrates biology

and computer science. Throughout the semester, students
conduct a sequence of wet-lab experiments to sequence the
16S ribosomal DNA gene of bacterial symbionts isolated
from marine sponges, specifically looking to identify novel
antibiotic-resistant species of bacteria in the sponge cultures.
Given the resulting DNA sequences, students use NCBI’s
BLAST utility [9] to identify good matches with DNA in
other organisms. Working in groups of five, students write
code that allows repeated searching of the BLAST results,
which then permits the students to analyze those results for
hypothesizing about antibiotic resistant bacteria in nature
and potential therapeutic uses.

This project requires students to understand and imple-
ment basic file I/O, arrays, and searching. The students
download BLAST results in XML format and then use a
simple approach for reading necessary information (sequence

accession number and species description) from the files.
Students store all data using a multi-dimensional array of
strings, and searches are performed using sequential search.

Additionally, in class we provide an introduction to al-
gorithm analysis, including big-O notation and scalability.
We present the concept of binary search (with the notion
that data must be sorted) as an alternative to sequential
search, but because there is not time to meaningfully cover
sorting algorithms, students are not required to implement
binary search. We also cover the Needleman-Wunsch algo-
rithm [10] for performing global alignment of two DNA se-
quences, which provides an introduction to the dynamic pro-
gramming technique. Students do not implement Needleman-
Wunsch in code, but working with the algorithm by hand
provides them an understanding of a technique similar to
those used in the BLAST utility.

Final Poster Presentation.
A final requirement in the first semester is for each group

to present a poster about their work. The poster, primarily
driven by the marine sponge experiments and data analyses,
must incorporate and integrate all five disciplines. Students
are graded (a) as a group on poster content and integration,
and (b) individually during a one-on-one oral presentation
of the poster to a faculty member from the course. We also
open the presentations to the university at large.

2.2 Second Semester Topics and Projects
The first semester of IQS includes at least some front-

loading of required topics from all disciplines. The front-
loading is particularly pronounced for CS, for reasons de-
scribed earlier. This results in greater flexibility regarding
selection of topics for the second semester of the course.
For the computer science components, we try to choose top-
ics that a computer science researcher might address, to
counterbalance the focus on skills acquisition in the first
semester, and to dispel any notion that computer science is
“just programming”.

We have offered a variety of second-semester topics and
projects over the first three years of IQS, some of which are
mentioned in Section 4. For the remainder of this section we
discuss the topic, and its organization, that will be covered
in the second semester of the current academic year.

Artificial Neural Networks.
During the coming spring semester, the CS component of

IQS will focus on the theory and implementation of artifi-
cial neural networks, the first time that only a single research
area will be covered in the second semester of IQS. In each
of the previous three years, three or four different topics
were covered. However, our experience is that even gifted
first-year students respond better to advanced topics when
those topics are introduced in small chunks. Moreover, dis-
cussing a single topic allows for a more detailed exploration,
and one that potentially covers more advanced CS concepts.
The use of a single overarching topic for the CS material also
has the advantage of avoiding the startup costs of introduc-
ing several different topics. And because the performance
of a neural network is well quantified, students see and un-
derstand the need for additional mechanisms that improve
observed results. Note that, although we used this project
as one of three during the previous offering of IQS, a full-
semester version of the project will allow for more theoretical

detail, more time for experimentation, and increased student
understanding.

The students implement a neural network intended to
classify the ten base-10 digits. A digit is represented as
an image, which is then cropped, centered, scaled, and vec-
torized. The network contains perceptrons that use a logis-
tic activation function, and the cost function is regularized.
Optimal weight values for the network are computed us-
ing gradient descent and the back propagation algorithm.
Correctness of back propagation implementations is verified
using gradient checking, which is subsequently disabled.

Students are provided with a base GUI (see Figure 1), and
are required to write methods to handle the corresponding
events (e.g., outputting drawn digits into appropriate file
format). Students are also supplied with default values for
required parameters (such as number of hidden layers, regu-
larization parameter, gradient descent step size, delta value
for gradient checking, and stopping threshold), but are re-
quired (and encouraged) to experiment with the values of
these parameters. A single training set with roughly 1000
training vectors is created by pooling a small number of
drawn digits (in file format as generated by the GUI) from
each student.

Few outside packages are used for the project. In particu-
lar, students code the perceptron class, the back propagation
and gradient checking algorithms, the gradient descent al-
gorithm, methods for reading matrices from and writing to
files, and methods for vectorizing and preprocessing images.
Basic matrix arithmetic operations are performed using the
Jama Matrix package [3].

Not all of the neural network processing and checking is
performed or discussed from the start. Rather, students ex-
periment with methods for improving the performance of
the initial version of the network. For example, they do
very little preprocessing of the data at the outset, using
raw pixel data, and attempt to implement the neural net-
work and back propagation without performing any check-
ing, other than final network output. When the neural net-
work performs poorly (as it will at this stage), we discuss
gradient checking, which the students then implement. This
has the bonus of demonstrating that numerical approxima-
tion of partial derivatives for performing gradient descent
is, in this context, generally infeasible. When back propaga-
tion implementations are verified, and network performance
is still poor, we discuss image preprocessing steps, which stu-
dents then implement. The final product is a neural network
that classifies with a success rate of approximately 75-80%.

The theory of neural networks includes fundamental CS
issues and integrates well with topics from mathematics and
biology. We discuss machine learning, and in particular that
machine learning methods often require the minimization
of functions of several variables. This prompts a review of
functions of several variables, partial derivatives, and gradi-
ent descent (covered in the first semester), as well as brief
coverage of some improved minimization algorithms. The
neural network concept is motivated by brief discussion of
biological neurons, a topic which is subsequently covered in
greater detail by the biologist teaching IQS. We also dis-
cuss the choice of a logistic activation function, as well as
why, and how, this function classifies behavior that cannot
be modeled in the absence of a non-linear transformation.
Bias and variance are covered when discussing the concept of

regularization. Finally, because the implementation is vec-
torized, the basics of matrix arithmetic are also discussed.

Among the desirable properties of this particular project
is that the concepts can be handled by first-year students,
and that when the project is completed, students have a
tool that allows for further exploration, including testing
additional preprocessing algorithms and comparing neural
network configurations and parameters. Most important,
however, is that students have been exposed to some of
the types of “non-programming” questions considered by re-
search computer scientists.

3. OUTCOMES
From the CS perspective, benefits to offering a course like

IQS include the following:

• Early exposure to CS is beneficial for students. Our
university has no CS requirement, and generally natu-
ral science students either do not take a CS course or
wait until late in their course of study. IQS is one way
to present CS early to alleviate these issues. Anec-
dotally, a few of our science colleagues have indicated
IQS students in their research labs demonstrating cod-
ing skills and algorithmic thinking not present in their
more traditional research students.

• A significant number of IQS students have gone on
to take a subsequent course in CS, boosting our en-
rollments. Moreover, we have garnered additional CS
majors and minors from among those students.

• Faculty development is an important component of
IQS. Working in a highly interdisciplinary setting pro-
vides CS faculty with more applications from a variety
of disciplines which we can bring into our own courses.
For example, one of us has incorporated the topic of
Monte Carlo conformational search into an upper-level
Simulation elective.

• Because the course development process promotes con-
versation among STEM faculty, new research opportu-
nities for faculty can be discovered. Anecdotally, one of
us is currently working on an interdisciplinary research
project that resulted from the initial IQS development.

To quantify the second bullet above, we have collected
data about students from the first four years of IQS. Of the
78 students who have taken IQS, 19 have gone on to take
at least one course at the CS2 level or above — nearly 25%.
This is a larger percentage than we had initially expected,
but certainly is welcomed. In the same time period, we have
had 230 students in our traditional CS1 courses. Of those
students, 86 have gone on to take at least one course at the
CS2 level or above — roughly 37%. We are thrilled with
a 25% retention from IQS for a group of students that, in
general, we would not see (or see early) in our courses.

We polled those 19 students about their perceived influ-
ence of CS within IQS: 12 of them indicated that early ex-
posure to CS in IQS was the primary reason they took ad-
ditional CS courses; only 3 of that 12 indicated they may
have taken a CS course anyway but later in their course of
study. Of the 7 who, prior to IQS, already felt they wanted
to pursue CS, all but one indicated that the CS experience
in IQS firmly established that desire (the remaining student

decided to pursue a non-STEM major). The absence of IQS
would not have precluded these students from taking a tra-
ditional CS1 course, but these data support the notion that
early exposure to CS is important.

Moreover, of the 19 IQS students who have taken at least
one course at CS2 or above, 16 are eligible to be declared
majors or minors. Of those 16 students, currently 6 are de-
clared as CS majors and 1 as a CS minor. Based on discus-
sions with last year’s IQS students (now eligible to declare),
we expect those to increase to 9 majors and 2 minors —
a 14% yield of all IQS students. Finally, 6 of the 14 have
conducted summer research in CS at the university. Ad-
mittedly, we cannot claim that IQS is the sole reason these
students have taken an additional CS course or declared CS
as a major, but we can claim IQS had a strong influence in
that regard.

From our most recent report to the primary funding agency
for development of the course, the Howard Hughes Medical
Institute, we also have data from the students who applied
to IQS during the inaugural year but were not accepted (54
students). From that control group, only 13% (7 of 54) took
a CS1 course and only 2% (1 of 54) took a CS2 course. In
contrast, 26% of IQS students (5 of 19) from the same year
as the control group took a CS2 course; 24% of all IQS stu-
dents (19 of 78) have taken a CS2 course (plus several from
the current year expressing an interest to do so in a future
semester). Again, these data support the need for early ex-
posure to CS.

Development and delivery of this course is not without is-
sues, however. The impact of IQS-required faculty resources
on staffing within CS is a primary issue. In the absence of
IQS, we in CS would likely have never seen most of these
students in our traditional CS1 courses. However, we are
essentially staffing two additional sections of a CS course
per year, roughly 10% of our total course offerings, to serve
20 IQS students — a significant impact. The initial de-
velopment year, in which two faculty obtained reassigned
time specifically for planning and development, exacerbated
this issue. In the absence of IQS, we could have offered
additional upper-level electives or general-audience service
courses. (While enrollment in our traditional CS1 courses
grew during this period, the demand was not sufficient to re-
quire additional sections.) These faculty resource impacts,
especially on small disciplines such as CS and physics, are a
major issue that must be addressed, both for the sustainabil-
ity of IQS at our university and for its ability to be adopted
by other institutions. Our university has received a grant re-
newal from HHMI to address ways to make IQS sustainable
and exportable, specifically in terms of the faculty resources
required.

A significant issue with the current state of the course is
the requirement that certain topics from each discipline be
presented. Because this is a first-year course that counts for
the first course in each of the five disciplines, buy-in from
the five departments depended on including minimum con-
tent from each discipline (typically a subset of the standard-
course minimum content). As a result, course development
was constrained by the opposing goals of trying to present
challenging interdisciplinary problems and the need to cover
a specific set of disciplinary topics.

Another primary challenge of this course is to identify
meaningful programming projects that are well integrated
with the course yet pitched at the appropriate level for the

students. It is not reasonable, for example, to expect stu-
dents to be able to code their own worms and viruses, despite
the many interesting ways in which the topic integrates with
biology and mathematics. In the first semester, in which we
cover the fundamental CS concepts, it is appropriate to have
several different, smaller projects. In the second semester,
in which we have more flexibility, a semester-long theme for
projects seems more appropriate. For example, neural net-
works and genetic algorithms share the important aspects of
integrating well with several disciplines, covering sufficient
material for a full-semester theme, and allowing for interest-
ing experimentation, while still being feasible for first-year
students to implement. In either semester, providing to the
students some initial code framework for particular projects
mitigates the latter issue of feasible implementation.

4. OBSERVATIONS
The course content and its delivery have evolved each year

we have offered IQS, and there are several lessons we have
learned in the process.

• An objects-first approach to CS, which we tried in the
first year, is difficult to execute successfully. This is
due in no small part to the divided attention of the
students and to the somewhat abbreviated nature of
overall topic coverage. Moving to a procedural ap-
proach early, with plenty of simple exercises, works
better in our experience with this course.

• Our expectations of the students in the course were
too high initially. Because the students are accepted
into IQS through an application process, we expected
them to be able to handle an initial introduction to
CS through carefully-crafted offline tutorials. This
was not the case, and we had to request more lec-
ture time. In hindsight, the mixture of student abili-
ties we encounter in our CS1 courses is very similar to
those in the IQS course. Moreover, we need to keep in
mind that, based on the structure of this two-semester
course, students in the second semester are “equiva-
lent” to students in the second half of a one-semester
CS1 course.

• It is critical in this setting for students to encounter
CS on a frequent basis, particularly with regular, ac-
cessible coding exercises. Large blocks of time between
CS assignments/lectures is not conducive to success.

• In the second semester of IQS, there are several in-
tegrated topics we used initially that in hindsight are
not especially well-suited to the current version of this
course. For example, topics in image processing re-
lated to the automation of two-dimensional gel elec-
trophoresis present an interesting interdisciplinary re-
search problem. However, the general problem itself
is too advanced, and, as currently structured, involves
too many individual stages to be feasible in a single
semester first-year level course (e.g., requiring cover-
age of frequency domain processes and complex num-
ber theory). Other topics, such as implementing the
Needleman-Wunsch sequence alignment algorithm or
a Brownian motion simulator, suffer from the oppo-
site problem: insufficient material to comprise a full-
semester theme or to retain student interest over the
course of a semester.

5. CONTEXT AND RELATED WORK
Similar efforts fall roughly into three categories. The first

comprises courses intended to introduce science majors to
computing skills required by their majors [1, 5, 8, 11, 14].
The second has been characterized as contextualized CS. Re-
lated courses in this category draw on the sciences or math-
ematics for organizing themes in introductory courses [2, 7].
The third category includes science courses that attempt to
combine two or more disciplines in an integrated fashion.

The University of Richmond’s IQS course falls squarely
into the third category. There are several relevant exam-
ples from other institutions. The Accelerated Integrated
Science Sequence at the Claremont Colleges [13] integrates
biology, chemistry, and physics. Students are introduced
to computer modeling with Matlab, but no computer sci-
ence credit is awarded. The closest match for the Rich-
mond course is Princeton’s Integrated Science course [12],
which served as a motivating example for the design of IQS.
The course has been described in several articles in the
Daily Princetonian, e.g., [16]. Both courses have a strong
problem-solving orientation and present material from biol-
ogy, chemistry, computer science, mathematics and physics.
They differ primarily on distribution of emphasis among the
disciplines, with the Princeton IS course providing “a math-
ematically and computationally sophisticated introduction
to physics and chemistry, drawing on examples from biolog-
ical systems” [12] (Freshman Year course description), while
Richmond’s IQS course provides students with preparation
equivalent to the initial course in all five disciplines. The
Richmond and Princeton courses are the only ones in this
category that prepare students to move directly into CS2.
The first year curriculum of Princeton’s Integrated Science
course takes as its organizing framework the set of quantita-
tive skills and techniques needed for tackling big problems,
particularly in the area of quantitative biology. Each of the
techniques is developed through applications in the partici-
pating disciplines [4]. Richmond’s course, on the other hand,
is organized about a research theme for each semester, with
the quantitative tools introduced as needed to develop the
theme. The strategies are different, though the ultimate
goals are similar.

6. CONCLUSIONS
Along with faculty from four other STEM disciplines, we

have developed for prospective science students a first-year
interdisciplinary course which has CS as a significant com-
ponent. Challenges include students with generally no CS
background, reduced presentation time compared to a tra-
ditional CS1 course, and the need to balance complex in-
tegrated problems with accessibility for students. Benefits
include non-traditional students who proceed to additional
courses and/or major in CS, the opportunity to present some
advanced topics early, and faculty development. We are cur-
rently working to reduce staffing impacts and to make the
course exportable. We will gladly provide materials and ad-
ditional details to interested parties.

7. ACKNOWLEDGMENTS
The authors and their faculty colleagues gratefully ac-

knowledge the support of the Howard Hughes Medical Insti-
tute, PKAL/KECK FIDL, the National Science Foundation,
and the University of Richmond.

8. REFERENCES
[1] J. C. Adams and R. J. Pruim. Computing for STEM

majors: enhancing non CS majors’ computing skills.
In Proc. SIGCSE 2012, pages 457–462, Raleigh, NC,
March 2012.

[2] V. Barr. Create two, three, many courses: an
experiment in contextualized introductory computer
science. J. Comput. Sci. Coll., 27(6):19–25, June 2012.

[3] R. F. Boisvert, J. Hicklin, B. Miller, C. Moler,
R. Pozo, K. Remington, and P. Webb. JAMA: A Java
Matrix Package. Retrieved Sep 5, 2012 from
http://math.nist.gov/javanumerics/jama/.

[4] D. Botstein. An Integrated Science Curriculum at
Princeton. iBioMagazine, June 2011. Retrieved Sep 3,
2012 from http://ibiomagazine.org/issues/

june-2011-issue/david-botstein.html.

[5] Z. Dodds, R. Libeskind-Hadas, C. Alvarado, and
G. Kuenning. Evaluating a breadth-first CS 1 for
scientists. In Proc. SIGCSE 2008, pages 266 – 270,
Portland, OR, March 12 – 15 2008.

[6] L. N. Gentile, L. Caudill, M. Fetea, A. Hill, K. Hoke,
B. Lawson, O. Lipan, M. Kerckhove, C. Parish,
K. Stenger, and D. Szajda. Challenging disciplinary
boundaries in the first year: A new introductory
integrated science course for STEM majors. J. College
Sci. Teaching, 41(5):24 – 30, May 2012.

[7] M. Guzdial. A media computation course for
non-majors. In Proc. of ITiCSE ’03, pages 104–108,
Thessaloniki, Greece, 2003.

[8] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan,
and A. L. Hosking. A multidisciplinary approach
toward computational thinking for science majors. In
Proc. SIGCSE 2009, pages 183 – 187, Chattanooga,
TN, March 2009.

[9] National Center for Biotechnology Information.
BLAST: Basic Local Alignment Search Tool. Retrieved
Sep 5, 2012 from http://blast.ncbi.nlm.nih.gov/.

[10] S. Needleman and C. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. J. Mol. Bio.,
48:443–453, 1970.

[11] Princeton University Computer Science. Computer
Science 126, April 1 2012. Retrieved Aug 17, 2012
from http://www.cs.princeton.edu/~cos126.

[12] Princeton University Lewis-Sigler Institute for
Integrative Genomics. Integrated Science, March 1
2012. Retrieved Aug 17, 2012 from
http://www.princeton.edu/integratedscience/.

[13] K. L. Purvis-Roberts, G. Edwalds-Gilbert, A. S.
Landsberg, N. Copp, L. Ulsh, and D. E. Drew.
Accelerated Integrated Science Sequence. J. Chem.
Ed., 86(11):1295 – 1299, Nov. 2009.

[14] R. Sedgwick and K. Wayne. Introduction to
Programming in Java: An Interdisciplinary Approach.
Addison-Wesley, 2008.

[15] P. Seiden and F. Celada. A model for simulating
cognate recognition and response in the immune
system. J. Theor. Biol., 158:329–340, 1992.

[16] T. Thein. Integrated science pays off for graduates.
Daily Princetonian, October 12 2009.

