
Toward an Optimal Redundancy Strategy for Distributed Computations∗

Doug Szajda Barry Lawson Jason Owen
University of Richmond

Richmond, Virginia
{dszajda, blawson, wowen}@richmond.edu

Abstract

Volunteer distributed computations utilize spare proces-
sor cycles of personal computers that are connected to the
Internet. The related computation integrity concerns are
commonly addressed by assigning tasks redundantly. Aside
from the additional computational costs, a significant dis-
advantage of redundancy is its vulnerability to colluding
adversaries. This paper presents a tunable redundancy-
based task distribution strategy that increases resistance
to collusion while significantly decreasing the associated
computational costs. Specifically, our strategy guarantees
a desired cheating detection probability regardless of the
number of copies of a specific task controlled by the adver-
sary. Though not the first distribution scheme with these
properties, the proposed method improves upon existing
strategies in that it requires fewer computational resources.
More importantly, the strategy provides a practical lower
bound for the number of redundantly assigned tasks re-
quired to achieve a given detection probability.

Keywords: distributed computation, probabilistic veri-
fication

1. Introduction

Distributed volunteer computing platforms, in which
personal computers connected to the Internet volunteer idle
processor cycles, facilitate computations that were once un-
obtainable without the use of a large cluster or supercom-
puter. Typically, thesupervisorof a volunteer distributed
computing platform recruitsparticipantswho agree to al-
low the supervisor to execute code on their personal com-
puters. Participants then download code that serves as the
local execution environment for assigned computational
tasks, which are typically small enough to be handled in
a few hours by a typical personal computer. For a given

∗This work was partially supported by the National Science Founda-
tion under grant IIS-0524239.

computation, participants are chosen, tasks are assigned
and transmitted, and, as tasks are completed, significant re-
sults are collected by the supervisor. Though task results
may be related, the tasks themselves are independent, so no
communication is necessary between participants. Exam-
ples of current endeavors include the Folding@home and
SETI@home projects and Apple’s XGrid.

Because code is executed in untrusted environments,
several security concerns are raised. These include the po-
tential for participants to intentionally or unintentionally
corrupt results and for participants to claim credit for work
not completed. The standard approach to hardening these
computations is simple redundancy, in whichk (typically
2) copies of each task are distributed. While providing a
measure of protection, simple redundancy is vulnerable to
collusion since matching returned results are typically as-
sumed to be correct. Thus in the absence of additional ver-
ification mechanisms (which are typically very expensive),
an adversary controlling two copies of the same task can
cheat with impunity. Moreover, obtaining multiple copies
of some tasks is relatively easy. A dedicated individual
can obtain hundreds of user names, each of which can be
assigned thousands of tasks1. An obvious variation is to
assign tasks redundantly, but to require that only a single
copy of a given task is outstanding at any time. This dou-
bles both the resource and time costs of the computation,
but still does not eliminate the collusion threat — in anN
task computation, an adversary who controls at least1/

√
N

proportion of the participants is expected to be able to cheat
on at least one task without being caught (justification in
Appendix A).

Golle and Stubblebine [3], in the course of describ-
ing a general security based administrative framework for
commercial distributed computations, present a task dis-
tribution scheme that offers significant improvement over
simple redundancy. Their strategy relies on probabilis-

1The Search for Extra-Terrestrial Intelligence project [12] conducted
by SETI@Home, for example, has experienced days in which more than
5000 new user names were assigned, and boasts participants who haveav-
eragedmore than 1000 tasks completed each day since the project began.

tic redundant verification to guarantee increased protection
against collusion by ensuring that (in theory) adversaries
face detection probabilities above a predetermined thresh-
old – regardless of the number of copies of a task the adver-
sary controls. Moreover, in many cases their scheme pro-
vides significant resource savings over simple redundancy.
Their work did not consider the modifications required to
apply their approach to a real world implementation.

Relative to the work of Golle and Stubblebine [3],
we have considered additional schemes that provide equal
protection while requiring fewer computational resources.
This leads naturally to the primary question considered in
this paper:Does there exist a distribution scheme that uses
the minimum possible resources yet guarantees a given
probability of detection, regardless of the number of copies
of a task the adversary controls?

We present here a distribution, theBalanced distribu-
tion, which achieves an optimalpracticaluse of computing
resources. We emphasize the “practical” modifier for sev-
eral reasons. First, implicit in the designation “optimal”is a
well-defined mathematical problem. In the present context,
the natural mathematical model is a linear programming
problem in which constraints are dictated primarily by con-
ditions on the probability of detecting cheaters. These con-
straints, as we will show later, cannot be met in a finite di-
mensional system unless the supervisor is required to pre-
compute some tasks. Reducing the number of precomputed
tasks, however, requires increasing the number of variables
in the linear system. This results in greatly decreased cheat
detection probabilities for certain tasks when the adversary
controls a nontrivial number of participants. Thus distri-
butions that are optimal in that they require the minimum
amount of computing resources are not necessarily the dis-
tributions that best satisfy the protection requirements of
these computations.

The Balanced distribution, on the other hand, requires a
trivial amount of precomputing, and is robust in the pres-
ence of an adversary controlling a large proportion of par-
ticipants. Moreover, when this last consideration about the
adversary is included in the relevant linear programming
model, the Balanced distribution is the resulting optimal so-
lution. Thus the Balanced distribution represents the best
balance of efficient use of computing resources, low pre-
computing requirements, and relatively good resistance to
an adversary controlling a significant number of partici-
pants.

The specific contributions of this paper are the follow-
ing:

• Provide a theoretical lower bound for the amount of
redundancy required to guarantee a given cheating de-
tection threshold.

• Present the Balanced distribution, a theoretical task

distribution scheme that requires significantly fewer
resources than simple redundancy while improving
protection from colluding adversaries controlling a
significant number of participants.

• Present techniques that allow this theoretical distribu-
tion to be applied to real world systems.

Finally, two caveats. As with any probability based
scheme, security is based on providing an environment in
which thelikelihood of detecting malicious activity is in-
creased. Because there is noguaranteethat malicious ac-
tivity will be detected, a determined adversary will succeed
in disrupting the system if she makes a sufficient number of
attempts to do so. It is highly likely, however, that in mak-
ing these attempts she will be detected, alerting the super-
visor to the presence of an active adversary, and allowing
for potential (though likely more expensive) reactive mea-
sures.

Second, we make no claim that our solution, or any
static redundancy based solution, provides the “best” so-
lution to the problem of guaranteeing the integrity of dis-
tributed computations. There are, for example, several al-
ternative schemes proposed for improving security in these
computations (see e.g., [2, 6, 10, 13]), many of which do
not rely on static redundancy. The fact remains, however,
that all current implementations of which we are aware
rely on static redundancy schemes (typically simple redun-
dancy) for protecting computation integrity. It is thus pru-
dent to consider whether there exist better, or even optimal,
static redundancy schemes.

We argue that the Balanced distribution is the best over-
all distribution scheme (when all factors are considered) for
three key reasons:

1. It provides significantly better protection against col-
lusion than simple redundancy, often with decreased
computing costs.

2. It requires fewer compute resources than any currently
proposed static redundancy scheme and a negligible
amount of precomputing.

3. Perhaps most important, because ours is a static re-
dundancy scheme, deployment costs are trivial: cur-
rent implementations can be easily modified to exe-
cute the strategy.

The remainder of the paper is organized as follows. In
Section 2 we briefly discuss our model of the distributed
computations and platforms under consideration, and pro-
vide notation and terminology. Sections 3 and 4 motivate
and present the Balanced distribution. Section 5 considers
the effect of an adversary controlling a significant number
of participants. Sections 6 and 7 discuss the modifications
required for implementation in real systems, as well as an

extension of the Balanced distribution. Section 8 covers
related work and conclusions are presented in Section 9.

2. The model

We assume the same terminology and model as de-
scribed in [13]. To further clarify, we use the termassign-
mentto denote the code and data allocated to a participant.
Assignments are not distinct — there can, and often will,
be multiple identical assignments in a computation. Tech-
nically, we consider tasks to be members of a set, while
assignments are members of a multiset whose elements are
tasks. If there are exactlyk copies of a task in a computa-
tion, then we say that the task hasmultiplicity k or equiva-
lently is amultiplicity k task.

We assume the existence of a global intelligent adver-
sary controlling multiple participants. The adversary has
knowledge both of the algorithm used for the computation
and of the measures used to protect the integrity of the com-
putation. Implicit in the assumption of a global adversary
is that collusion is both possible and likely, and that the
adversary has no knowledge of tasks not assigned to her.
When the adversary has been assignedk copies of a given
task, we say that shecontrolsk copies of the task. An ad-
versarycheatson a task by attempting to return an identical
incorrect result on all copies of the task in her possession.

Finally, attacks that result from a compromise of data in
transit are beyond the scope of this paper — we assume the
integrity of such data is verified by other means. In addi-
tion, we do not consider attacks that result from the com-
promise of the central server or other trusted management
nodes.

2.1. Terminology and Notation

A redundancy-based distribution scheme for a dis-
tributed computation is specified by the number of tasks
that are to be assigned with multiplicityi, for i =
1, 2, 3, We assume for the remainder of the paper that
the computation under consideration consists ofN tasks
(though certainly more thanN assignments). We use vec-
tor notation to describe specific distributions. That is, we
use the vector̄x = (x1, x2, x3, . . .), with nonnegative com-
ponents to describe the distribution in which exactlyxi

tasks have multiplicityi. Equivalently, the proportion of
tasks assigned with multiplicityi is xi/N. For example,
simple redundancy, in which all tasks are assigned exactly
twice, would correspond to the vector(0, N, 0, 0, . . .), and
in this example the proportion of tasks assigned with mul-
tiplicity 2 is x2/N = 1.

In any real implementation, there will be an upper bound
on task multiplicities. Rather than impose an a priori up-
per limit on multiplicities, for theoretical reasons we allow

distributions with arbitrarily large multiplicities. We define
thedimensionof distributionx̄ = (x1, x2, x3, . . .) to be the
largest indexi for which xi is nonzero, if such ani exists,
and to be infinite otherwise. Since each of theN tasks must
be assigned a multiplicity, we must have

∑∞
i=1 xi = N ,

and as a result thatlimn→∞ xn = 0. Finally, the total num-
ber of assignments in a distribution is given by

∑∞
i=1 ixi.

We define theredundancy factorof a distribution to be the
ratio (

∑∞
i=1 ixi)/N. As an example, note that for simple

redundancy the redundancy factor is2x2/N = 2N/N = 2.

Implicit in our acceptance of infinite dimensional dis-
tributions is the potential for the assignment of arbitrarily
small fractions of tasks (i.e., thatxi can be real valued but
nonnegative). Just as infinite dimensional distributions are
not possible in real systems, so too are such fractions of
tasks not possible. However, allowing them in a theoretical
context simplifies the analysis. These theoretical assump-
tions are easily modified for actual implementations, as we
describe in Section 6.

2.2. Constraints

We consider distributions in which the probability of de-
tecting an adversary who cheats is no smaller than some
fixed levelα, with 0 < α < 1. Toward this, letPk,p de-
note the probability that an adversary who controls propor-
tion p of the total assignments is detected when cheating
on a task of which she controlsk copies. We letPk denote
the probability that an adversary who controls exactlyk as-
signments, all of them copies of the same task, is detected
when attempting to cheat on that task. Thisasymptoticde-
tection probability satisfiesPk = limp→0 Pk,p, and thus in
practical terms gives the probability that an adversary is de-
tected when she controls a small proportion of participants.
For clarity we focus our attention for the moment on the
asymptotic probability.

For k a positive integer, define ak-tuple to bek copies
of the same task. Then for a distributionx̄, we have

Pk =
of k-tuples from tasks assigned> k times
of k-tuples from tasks assigned≥ k times

=

∑∞
i=k+1

(

i
k

)

xi

xk +
∑∞

i=k+1

(

i
k

)

xi

.

Therefore we have the following equivalent inequalities:

Pk ≥ α

⇐⇒ α

(

xk +

∞
∑

i=k+1

(

i

k

)

xi

)

≤
∞
∑

i=k+1

(

i

k

)

xi

⇐⇒ xk ≤
(

1 − α

α

) ∞
∑

i=k+1

(

i

k

)

xi.

Fork a positive integer, we letCk denote the constraint that
Pk ≥ α (i.e., the probability of detecting an adversary who
controlsk copies of a task is greater than or equal toα).
We letC0 denote the constraint that

∑∞
i=1 xi = N .

We say a distribution̄x represents avalid infinite dimen-
sional distributionif

∑∞
i=1 xi = N , eachxi is nonnega-

tive, andPk ≥ α for all positive integersk. The vector
x̄ represents avalid m-dimensional distributionif xi = 0
for i > m,

∑m
i=1 xi = N , eachxi is nonnegative, and

Pk ≥ α for k = 1, 2, . . . , m − 1. That is, infinite dimen-
sional distributions are valid if they assign each of theN
tasks a non-negative multiplicity, and satisfy all detection
probability constraints. Finite dimensional distributions,
on the other hand, are valid if they assign each of theN
tasks a non-negative multiplicity, and satisfy all but one
of the detection probability constraints. Specifically, the
constraint thatPm ≥ α cannot be satisfied by a validm-
dimensional distribution, since in the absence of additional
security mechanisms (such as the supervisor verifying all
multiplicity m tasks), an adversary who controlsm copies
of a task can cheat without detection.

These observations have interesting implications for real
systems. Since clearly any implementation will have an
upper bound on task multiplicities, only finite dimensional
distributions can be implemented. Thus in order to meet
all probability constraints, the supervisor must verify some
tasks. We assume then for the remainder of the article that
all valid finite dimensional distributions are augmented by
some form of verification that ensures thatall probability
constraints are met. Exactly which and how many tasks
must be verified is a question that will be considered fur-
ther when the issue of optimal distributions is discussed in
Section 4. For now, we impose only one loosely defined
constraint: the amount of precomputing must be reason-
ably small. In particular, the distribution in which all tasks
are precomputed trivially satisfies all of the required prob-
ability constraints, but is of little practical use, and we thus
do not consider it or any solutions that require similarly
large amounts of precomputing.

3. Motivation

3.1. The Golle-Stubblebine Distribution

The first (and to our knowledge only, prior to the cur-
rent article) distribution scheme that meets the required
probability constraints for all positive integersk is that of
Golle and Stubblebine [3]. They propose the assignment
ḡ = {gi} defined fori = 1, 2, . . . by gi = (1 − c)ci−1N ,
for fixedc with 0 < c < 1. Straightforward analysis shows
that

∑∞
i=1 gi = N , and that the total number of assign-

ments required isN/(1−c), or equivalently that the redun-
dancy factor is1/(1 − c). They show that the asymptotic

probability that the adversary is detected while cheating on
ak-tuple is

Pk = 1 − (1 − c)k+1.

More generally,

Pk,p = 1 − (1 − c(1 − p))k+1.

Note that these probabilities increase with increasingk. In
order to guarantee that the detection probability remains at
or above levelα, it suffices to guarantee thatP1,p ≥ α. In
the asymptotic case, this requiresα = 1−(1−c)2 or equiv-
alently c = 1 −

√
1 − α. The redundancy factor associ-

ated with detection probabilityα in the Golle-Stubblebine
distribution is thus1/

√
1 − α, so that in the asymptotic

case, their scheme requires fewer resources than simple
redundancy providedα < 0.75. The corresponding non-
asymptotic redundancy factor is1−p√

1−α−p
.

It was the observation that detection probabilities in-
crease with increasingk that suggested the potential for a
more efficient (and possibly provablymostefficient) distri-
bution of tasks. An adversary with knowledge of the Golle-
Stubblebine distribution scheme knows that she encounters
the most favorable odds of cheating without detection when
she cheats on a task of which she possesses a single copy.
Thus the apparent additional protection against cheating on
k-tuples withk > 1 is illusory, since an intelligent adver-
sary will not attempt to cheat on these. The consequence
is that the “extra” assignments required by this scheme are
wasted resources. Regardless, this distribution is an elegant
solution to the problem for two reasons: for appropriately
chosenc values, (i) the adversary is faced with an unfavor-
able (from the adversary’s perspective) probability of be-
ing detected regardless of the number of copies of a task
she possesses, while (ii) the total assignment cost can be
significantly less than simple redundancy.

3.2. The Assignment Minimizing Distributions

In moving toward a resource-optimal distribution, the
concern is exclusively with minimizing the number of as-
signments required by a distribution. If one assumes that
the adversary can obtain control of only a trivial proportion
of assignments (an assumption we have argued is in gen-
eral dangerous for these computations), then determining
the best distribution involves a linear programming prob-
lem in either finite or infinite dimensions, in terms of the
probability constraintsCi from Section 2.2. Specifically,
let S denote the infinite dimensional system that seeks to
minimize the functionM(x1, x2, x3, . . .) =

∑∞
i=1 ixi sub-

ject to the constraints that both thexi are nonnegative, and
Ci for i ≥ 0 are satisfied. LetSk denote this same system,
with the exception that only theCi for i < k need be sat-
isfied (in addition to the nonnegativity constraints). Note

that in Sk, xk is effectively unconstrained (except that it
must be nonnegative). The following proposition provides
a lower bound on the total number of requirements neces-
sary for the optimal solution to these systems. The proof is
presented in Appendix B.

Proposition 1. An optimal solution to systemS or to
any Sk must require strictly greater than2N

2−α
total as-

signments. Equivalently, the optimal redundancy factor is
strictly greater than 2

2−α
.

Because solving any of the finite dimensional systems
Sk is an elementary linear programming problem, we
present the following facts without proof. Though the so-
lutions for allα exhibit similar behavior, their exact form
varies withα. We present theα = 0.5 solution as a repre-
sentative model.

Fact. The optimal solution toSk for k ≥ 6 is the distribu-
tion x̄ with

x1 =
2Nk2

2 − k + 3k2
, x2 =

Nk(k − 1)

2 − k + 3k2
,

xk =
2N

2 − k + 3k2
(1)

andxi = 0 for 3 ≤ i ≤ k − 1. The redundancy factor for
this distribution is4k2/(2 − k + 3k2).

Optimal solutions for otherα values share the similar
characteristics: most tasks are distributed either once or
twice, but there is a small tail portion with just enough mass
to ensure that constraintsC1 andC2 are satisfied. Some-
times the tail mass is concentrated only onxk; sometimes
there is also mass atxk−1. All other components of̄x are
zero.

Note that ask grows large, the redundancy factor for
the finite dimensional solution approaches the lower bound
redundancy factor of4/3 described in Proposition 1 (with
α = 0.5). This is the typical behavior of the optimal solu-
tions to theSk.

We mentioned above that these distributions are optimal
if one considers number of assignments exclusively and
assumes that the adversary controls relatively few assign-
ments. In practical systems, two additional important fac-
tors play a role: 1) the amount of precomputing required;
and 2) non-asymptotic probabilities (i.e., assuming the ad-
versary can control a nontrivial proportion of assignments).
We consider the issue of non-asymptotic probabilities in
greater detail in Section 5. For now, we make three gen-
eral observations regarding the behavior of the assignment
minimizing distributions. First, as the dimension increases,
the total number of assignments required for the optimal
solution decreases2. Second, as the dimension increases,

2This somewhat counterintuitive result stems from the special form of

 0

 0.6

 0.8

 1

 0.2P
ro

b
ab

ili
ty

 D
et

ec
te

d

Proportion Controlled by Adversary
 0 0.05 0.1 0.15 0.2

 0.4

Balanced distribution
Optimal solution toS9 (N=100,000)
Optimal solution toS26 (N=1,000,000)

Figure 1. Detection probabilities for three different
distributions (α = 1/2 in each). Optimal solutions
for S9 andS26 are plotted. These represent (for the
givenN values) the first finite dimensional solutions
that require fewer than 1000 precomputed tasks.

the amount of precomputing required by the optimal so-
lution decreases. Finally, as the dimension increases, the
detection probability for some assignments in the distribu-
tion decreases rapidly. There are localized exceptions to
these rules. Consider, for example, the detection probabil-
ities for the minimizing distributions forα = 0.5 shown
in Figures 1 and 2. In moving from the solution forS5 to
the solution forS6, the amount of precomputingincreases
from 602 tasks to 1923 tasks. In addition, in moving from
systemsS3 toS4, the redundancy factor increases, again vi-
olating the general principles above. However, in all cases,
the validity of the observations in terms of global behavior
remain valid. Similar behavior is observed in these systems
for all relevantα values: ensuring that precomputing levels
are sufficiently low requires moving to higher dimensional
systems. Systems with higher dimension, however, suffer
from detection probabilities that decrease rapidly for some
task multiplicities as we consider non-asymptotic proba-
bilities (as depicted in the last few rows in Figure 2. The
reason for this is that for the assignment minimizing distri-
butions, the vast majority of tasks are distributed once or
twice (with a small amount distributed at the tail). As the
adversary gains control of even a small proportion of tasks,
she will obtain more than two copies of some. The non-
asymptotic probability then becomes a conditional proba-
bility, and the knowledge that some tasks under her control

the optimal solutions: as in Equation (1), task multiplicities are either1, 2,
or k, with most tasks assigned once or twice. Ask increases, fewerk mul-
tiplicity tasks are required to “cover” the tasks assigned with multiplicity
one or two.

Precomputing Redundancy Min. Pk Min. Pk Min. Pk

Dim. Required Factor p = 0.05 p = 0.1 p = 0.2

1 100000 1.000 1.000 1.000 1.000
2 33333 1.333 0.487 0.474 0.444
3 7692 1.384 0.487 0.474 0.444
4 1333 1.387 0.487 0.474 0.444
5 602 1.386 0.474 0.448 0.390
6 1923 1.385 0.449 0.396 0.291
7 1408 1.380 0.436 0.371 0.247
8 1075 1.376 0.424 0.347 0.208
9 848 1.373 0.411 0.324 0.173

10 685 1.370 0.399 0.301 0.144
15 302 1.359 0.339 0.203 0.052
20 169 1.354 0.284 0.131 0.018
25 108 1.350 0.235 0.081 0.006
30 75 1.347 0.192 0.05 0.002

Bal. 1 1.386 0.482 0.464 0.426

Figure 2. Comparing the amount of precomput-
ing required, redundancy factor, and lowest detec-
tion probabilities for the assignment minimizing dis-
tributions of a given dimension. Parameter values are
N = 100, 000 andα = 0.5. The final line gives fig-
ures for the Balanced distribution.

are in the tail of the distribution changes her odds of being
caught on a two-tuple.

One final word on precomputing. We are reluctant to
assign an arbitrary limit to the multiplicities of tasks, since
the capacities of supervisors (and their willingness to per-
form verification) will vary. Regardless, it should be noted
that precomputing a significant number of tasks is espe-
cially costly since in addition to the usual overhead of
redundancy, computing requirements are effectively reas-
signed from the untrusted participants to the relatively few
trustednodes of the supervisor. This wastes resources that
might be used for additional security measures or post-
processing.

4. The Balanced Distribution

For fixed detection probability thresholdα, let theBal-
anced Distribution̄a = {ai} be defined fori = 1, 2, . . .
by

ai = N

(

1 − α

α

)

1

i!

(

ln

(

1

1 − α

))i

(2)

Theorem 1. For α with 0 < α < 1 the distribution̄a has
the following properties:

1.
∑∞

i=1 ai = N .

2. Pk = α for all positive integersk.

3. The total number of assignments required is

N

α
ln

(

1

1 − α

)

.

 0.85 0.95

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.55
 1

 0.65

R
e

d
u

n
d

a
n

c
y

 F
a

c
to

r

(Asymptotic Probability of Detection)

 0.75

Theoretical Lower Bound
Simple Redundancy

Golle−Stubblebine
Balanced Distribution

α

Figure 3. Redundancy factors for the Balanced and
Golle-Stubblebine distributions. Included are the
factors for simple redundancy and the theoretical
minimum redundancy factor.

The proof is presented in Appendix C. Figure 3 com-
pares the redundancy factor of the Balanced distribution
with both the Golle-Stubblebine distribution and simple re-
dundancy. The redundancy factor of the Balanced distribu-
tion is less than that of the Golle-Stubblebine distribution
for 0 < α < 1, and less than simple redundancy when
α ≤ 0.796812. Figure 4 shows example Balanced and
Golle-Stubblebine distributions forN = 1, 000, 000 and
α = 0.75. The final two non-zero entries in both the Bal-
anced and Golle-Stubblebine distributions represent the tail
modifications with ringers as presented in Section 6. Note
that for these parameter values, the Balanced distribution
provides a savings of more than 150,000 assignments over
both the Golle-Stubblebine and simple redundancy distri-
butions.

Though the Balanced distribution requires more total as-
signments than the Assignment Minimizing distributions,
it has the important advantage that it requires a negligible
amount of precomputing while at the same time remain-
ing robust to collusion in the sense that detection probabil-
ities decrease relatively slowly as the proportionp of as-
signments controlled by the adversary increases.

5. Non-Asymptotic Detection Probabilities

We consider in this section the issue of efficiency of
a distribution in the non-asymptotic case (i.e., when the
adversary controls a significant proportion of the assign-
ments). Intuitively, if the non-asymptotic probabilitiesof a

Balanced Golle- Simple
Dim. Distribution Stubblebine Redundancy

1 462098 500000 0
2 320302 250000 1000000
3 148010 125000 0
4 51296 62500 0
5 14222 31250 0
6 3286 15625 0
7 650 7812 0
8 112 3906 0
9 17 1953 0

10 2 976 0
11 5 488 0
12 3 244 0
13 0 122 0
14 0 61 0
15 0 30 0
16 0 15 0
17 0 7 0
18 0 3 0
19 0 1 0
20 0 7 0
21 0 3 0

Tasks 1848452 2000174 2000000
Redund. 1.848 2.0 2.0

Factor

Figure 4. Comparing task assignments for Bal-
anced, Golle-Stubblebine, and simple redundancy.
Parameter values areN = 1, 000, 000 andα = 0.75.
Figures for tail partition and ringers are included.

distribution vary withk then the distribution is inefficient.
That is, the effective detection probability provided by a
distribution is the minimum, over all relevantk, of Pk,p.
When thePk,p values for a fixedp vary with k, then re-
sources (extra copies of tasks) are being used to increase
the detection probabilities for some values ofk to levels
above this effective detection level. These extra resources
increase computation costs without increasing protection
and are thus effectively wasted.

Given this, we consider in the next proposition the
asymptotic properties a distribution must exhibit if that dis-
tribution is to be the most efficient (in terms of asymptotic
total assignments) distribution that isalsoefficient in non-
asymptotic cases. The proposition shows that such a distri-
bution must exhibit equality in all relevant constraintsCi

(i.e.,Pk = α).

Proposition 2. Let p be a fixed proportion,0 ≤ p < 1,
and fixedd be either a positive integer or∞. Let Ed be
the set of all valid distributions of dimensiond such that
Pk,p is independent ofk. Then the distribution inEd that
requires the fewest total assignments must have asymptotic
detection probabilitiesPk satisfyingPk = α for 1 ≤ k <
d (where in the cased = ∞, the property holds for all
positive integersk). [Proof presented in Appendix D.]

In fact, this property is satisfied by the Balanced distri-
bution, as the following proposition asserts. The proof is
presented in Appendix E.

Proposition 3. Assume that tasks are assigned according
to the Balanced distribution. Letp be the proportion of the
total number of assignments controlled by the adversary.
Then fork a positive integer, the probability that the ad-
versary is caught while attempting to cheat on ak-tuple of
identical assignments is

Pk,p = 1 − (1 − α)1−p.

Proposition 2 only asserts that a good distribution
scheme must achieve equality in theCi, not that achiev-
ing equality guarantees an optimal distribution. In practice,
however, when theSk systems are augmented so that the
solution must satisfy thatPk = α, the resulting optimal
solutions are virtually indistinguishable from the Balanced
distribution. We thus conclude that the Balanced distribu-
tion is the “best” distribution in that it provides the best
balance of low redundancy factor, extremely low precom-
puting requirements, and efficiency in the non-asymptotic
case.

6. Implementing the Strategy

The theoretical asymptotic analysis presented above ig-
nores two important realities. First, at some point in the
sequence{ai}, the value ofai will become less than one,
and thus the scheme requires the assignment of a fractional
number of tasks (an impossibility in practice). Second, in
any real implementation there is an upper bound on the
number of copies of any individual task (i.e.,i is finite). A
less important consideration is that eachai value given by
Equation (2) will almost always require rounding to han-
dle the decimal values (i.e., so that in practice the number
of tasks assigned a given multiplicity is an integer). All of
these issues are easily handled as we show in the following
suggested adaptation.

First, we round the sizeai of each partition down to the
nearest integer. Next, we address the issue ofai eventually
falling below1. Let if denote the first value ofi for which
ai < 1. Assuming thatα is bounded by0.99 (we expect
α < 0.8 in practice), straightforward algebra shows that
if is O(log((1 − α)N/α)). Whenai falls below 1, not
all of theN tasks will have yet been assigned (in fact, only
∑if−1

i=1 ai of the tasks). The remaining tasks are assigned to
one last partition, thetail partition, each with multiplicity
if .

The tail partition is small — according to Lagrange’s
formula for the remainder of a Taylor series,

∑∞
i=if

ai ≤
1/(1 − α) sinceaif

< 1. Including the effect of rounding
down thoseai wherei < if , the number of tasks assigned
to the tail partition is no greater thanif + 1/(1 − α). This
estimate is conservative: for the (extreme) valuesN = 107

andα = 0.99, if = 20, anda20 = 12. The tail partition

size (including copies) is 240 tasks compared to 4,651,688
total assignments in the computation. Hence, the number of
tasks (including copies) created by using a tail partition is
a negligible fraction of the total number of tasks assigned.
Moreover, the slight changes these modifications cause to
detection probabilities are inconsequential, with the excep-
tion of the detection probability associated with multiplic-
ity if tasks.

In practice, the adversary will not know the value ofif
and thus will not know that she can cheat on tasks of which
she possessesif copies. Even if she can learnif , there is
an easy solution to this problem: distributeif +1 copies of
a “ringer” task that has been precomputed by the supervi-
sor. If r ringer tasks are precomputed, then the asymptotic
probability that the adversary is detected when attempting
to cheat on a task of which she possessesif copies is

1 − xif

xif
+
(

if +1
if

)

r
= 1 − xif

xif
+ (if + 1)r

.

Equivalently, in order to ensure at least asymptotic prob-
ability α of detection in theif -tuple situation, one must
chooser satisfying

r >
αxif

(1 − α)(if + 1)
.

With the values from our example above (xif
= 12,

if = 20, andα = 0.99), at least57 ringers are required.
Again, these values are extreme. A more typical computa-
tion would haveN = 1, 000, 000, andα = 0.75, in which
caseif = 11 andxif

= 5. In this case, meeting level-α
security requires only2 ringers. Furthermore, the use of
ringers increases the probability an adversary is caught for
all values ofi.

7. Extending the Main Theorem

Our distribution can be generalized to handle situations
in which the supervisor wishes to guarantee a minimal re-
dundancy levelk for all tasks. The resulting distribution is
defined fori ≥ k by

ai = Nβ
1

i!

(

ln

(

1

1 − α

))i

with

β =
1

(

1
1−α

)

−
∑k−1

i=0
1
i!

(

ln
(

1
1−α

))i
.

As in the main theorem, the asymptotic detection probabil-
ity for all i ≥ k is α. The redundancy factor is

β

(

(

1

1 − α

)

−
k−2
∑

i=0

1

i!

(

ln

(

1

1 − α

))i
)

ln

(

1

1 − α

)

.

For example, the redundancy factors forα = 0.5 and dis-
tributions that require minimum multiplicities of 2,3,4, and
5, are respectively 2.259, 3.192, 4.152, and 5.126. Thus
a supervisor using simple redundancy on a computation
that hasN = 100, 000 tasks can guarantee an asymptotic
cheat detection probability of0.5 by assigning an addi-
tional 25,900 tasks (i.e., 13% more assignments than sim-
ple redundancy alone). Simple redundancy alone has no
such guaranteed detection probability.

8. Related work

The Golle-Stubblebine scheme [3] described in Sec-
tion 3.1 guarantees a given positive detection probability
while requiring fewer resources than simple redundancy.
Our distribution requires fewer resources that theirs, while
providing the same effective cheat detection probability.

In recent years, a small but growing collection of pa-
pers has emerged that cover various security issues specific
to these computations. Golle and Mironov [2] consider
computations involving inversion of a one-way function
(IOWF). They present several protection mechanisms and
use game theoretic arguments to measure the efficacy of
their strategies. Monrose, Wyckoff, and Rubin [6] propose
instrumenting host code in order to generate lightweight
execution traces that can be used to verify program execu-
tion. Most recently Sarmenta [10] and Szajda, et al. [13]
present probabilistic verification mechanisms that increase
the likelihood that an attempt to disrupt or cheat a compu-
tation will be detected. Neither of these papers considers
the question of optimal use of resources.

More peripherally related work addresses the general
problem of security in large-scale distributed computa-
tions. Wasserman and Blum [15] provide a survey of result-
checking and self-correcting programs, but lack of general
solutions causes applicability in our context to be limited.
Many implementations of distributed computing platforms
address the general issues of fault-tolerance [1, 7, 11], but
assume a fault model in which errors that occur are not the
result of malicious intent.

There is also a body of literature related to protecting
mobile agents from malicious hosts [4, 9, 14]. However,
mobile agents typically visit hosts for a short period of
time, while distributed volunteer computations can require
several hours of execution time — hence, time limited ob-
fuscation approaches [4] are not applicable. Furthermore,
approaches such as cryptographic traces to verify code exe-
cution [14] are not practical for large-scale distributed com-
putations because of the storage and communication over-
head required by the traces.

9. Conclusions

We have considered minimal resource task distribution
schemes that guarantee a predetermined cheat detection
threshold. We presented the Balanced distribution, a tun-
able distribution that increases collusion resistance rela-
tive to simple redundancy while decreasing the associated
computational costs. It is easily deployed and requires
only minor modifications to current system implementa-
tions. Moreover, the distribution is the optimal practical
solution— no other scheme requires fewer total assign-
ments without an increase in the number of precomputed
tasks and/or significant decreases in non-asymptotic detec-
tion probabilities.

Acknowledgments

We would like to thank the anonymous reviewers whose
comments helped us in preparing the final version of the
paper. We would also like to thank Kathy Hoke for her
helpful insights on the theory of linear programming.

References

[1] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the web.Future Generation
Computer Systems, 15(5-6):559–570, 1999.

[2] P. Golle and I. Mironov. Uncheatable distributed com-
putations. InProceedings of the RSA Conference 2001,
Cryptographers’ Track, pages 425–441, San Francisco, CA,
2001. Springer.

[3] P. Golle and S. Stubblebine. Secure distributed computing
in a commercial environment. In P. Syverson, editor,Pro-
ceedings of Financial Crypto 2001, volume 2339 ofLec-
ture Notes in Computer Science, pages 289–304. Springer-
Verlag, 2001.

[4] F. Hohl. Time Limited Blackbox Security: Protecting Mo-
bile Agents From Malicious Hosts. In G. Vigna, editor,Mo-
bile Agent Security, pages 92–113. Springer-Verlag: Hei-
delberg, Germany, 1998.

[5] N. Johnson, S. Kotz, and A. Kemp.Univariate Discrete
Distributions. J. Wiley & Sons, 2nd edition, 1993.

[6] F. Monrose, P. Wyckoff, and A. Rubin. Distributed ex-
ecution with remote audit. InProceedings of the 1999
ISOC Network and Distributed System Security Symposium,
pages 103–113, 1999.

[7] N. Nisan, S. London, O. Regev, and N. Camiel. Glob-
ally distributed computing over the internet—the Popcorn
project. InProceedings of the International Conference on
Distributed Computing Systems, pages 592–601, Amster-
dam, Netherlands, May 1998.

[8] W. Rudin. Real and Complex Analysis. McGraw-Hill, 3
edition, 1987.

[9] T. Sander and C. F. Tschudin. Protecting Mobile Agents
Against Malicious Hosts. In G. Vigna, editor,Mobile Agent
Security, pages 44–60. Springer-Verlag: Heidelberg, Ger-
many, 1998.

[10] L. Sarmenta. Sabotage-tolerance mechanisms for volunteer
computing systems.Future Generation Computer Systems,
18(4):561–572, March 2002.

[11] L. Sarmenta and S. Hirano. Bayanihan: Building and study-
ing web-based volunteer computing systems using java.
Future Generation Computer Systems, 15(5/6):675–686,
1999.

[12] The Search for Extraterrestrial Intelligence project. Univer-
sity of California, Berkeley.
http://setiathome.berkeley.edu/.

[13] D. Szajda, B. Lawson, and J. Owen. Hardening functions
for large-scale distributed computations. InProceedings of
the 2003 IEEE Symposium on Security and Privacy, pages
216–224, Berkeley, CA, May 2003.

[14] G. Vigna. Cryptographic Traces for Mobile Agents. In
G. Vigna, editor,Mobile Agent Security, pages 137–153.
Springer-Verlag: Heidelberg, Germany, 1998.

[15] H. Wasserman and M. Blum. Software reliability via run-
time result-checking.Journal of the ACM, 44(6):826–849,
1997.

A. Justification of 1/
√

N Claim

Assume that there areN tasks, and that each task is to be
distributed twice, exactly once in each of two phases. Dis-
tribution of tasks in the second phase begins after all tasks
have been distributed and results collected in the first phase.
Assume also that the adversary controls proportionp of
participants in each phase. We show here that for reason-
able (and realistic) values ofp andN , the expected number
of tasks of which the adversary controls both copies is well
approximated byp2N . To see this, assume that the adver-
sary is assigned exactlyk work units in each phase. As-
sume also that the tasks are indexed from0 throughN − 1
and that she is assigned tasks0, 1, . . . , k − 1 in phase one.
Now consider task assignments in the second phase. We
may assume without loss of generality that the adversary
is assigned the firstk randomly picked tasks from the sec-
ond phase. Any task she receives with index less thank is
a copy of a task she received in the first phase. For large
N and reasonably smallk (sayk < N/2) this is well ap-
proximated by the binomial distributionB(k, k/N) with k
trials and probability of successk/N in each trial. Thus the
expected number of tasks of which the adversary controls
both copies isk2/N . But we assumed that the adversary
controls proportionp of participants in each phase. That is,
p = k/N , and thus the expected value isp2N2/N = p2N .
Stated another way, the adversary is expected to be able to
cheat on at least one task as long asNp2 ≥ 1, or equiva-
lently p ≥ 1/

√
N .

B. Proof of Proposition 1

Proof. We provide the proof for systemS. Modification
for theSk is straightforward. Consider the system derived

from S by eliminating all constraints exceptC0 andC1.
Call this systemS′. BecauseS′ is derived fromS by elim-
inating constraints, the spaceF (S′) of feasible solutions
to S′ contains the set of feasible solutionsF (S) to S. We
achieve the desired result by showing that the distribution
x̄ with

x1 =
2N(1 − α)

2 − α
, x2 =

αN

2 − α
, andxi = 0

for i > 2 is the unique optimal solution forS′. Sincex̄ is
not feasible forS, this implies that this redundancy level
cannot be achieved by a feasible solution toS.

First, note that the total number of assignments required
by x̄ is

x1 + 2x2 =
2N

2 − α
.

Now, let v̄ be any other feasible solution toS′. By con-
straintC1,

v1 ≤
(

1 − α

α

) ∞
∑

i=2

ivi.

Equivalently (addingv1 to both sides),

1

1 − α
v1 ≤

∞
∑

i=1

ivi.

If v1 > x1, then

∞
∑

i=1

ivi ≥
1

1 − α
v1 >

1

1 − α
x1 =

1

1 − α

2N(1 − α)

2 − α
=

2N

2 − α
,

sov̄ cannot be optimal. On the other hand, ifv1 < x1, then

∞
∑

i=1

ivi > v1+2(N−v1) = 2N−v1 > 2N−x1 =
2N

2 − α
,

so again̄v cannot be optimal. Thus an optimal solution to
S′ must assign exactlyx1 tasks with multiplicity 1. This
in turn implies that any potential optimal solution̄v to S′,
must satisfy

∞
∑

i=2

ivi =

∞
∑

i=2

ixi.

If v2 > x2, then the sum of thēv is strictly greater thanN .
If v2 < x2, then sincex1 + x2 = N and

∑∞
i=1 vi ≥ N , v̄

must assign some tasks three times. In either case,

∞
∑

i=1

ivi >
2N

2 − α
,

so v̄ is not optimal.

C. Proof of Theorem 1

Proof. Properties 1 and 3 follow immediately from the fact
that the Balanced distribution can be expressed as a con-
stant multiple (N) times the zero-truncated Poisson Distri-

bution with parameterln
(

1
1−α

)

[5].

Property 2: From Section 2.2,

Pk = ak ⇐⇒ ak =

(

1 − α

α

) ∞
∑

i=k+1

(

i

k

)

ai.

Now,

(

1 − α

α

) ∞
∑

i=k+1

(

i

k

)

ai = N

(

1 − α

α

)2 ∞
∑

i=k+1

(

i

k

)

γi

i!

= N

(

1 − α

α

)2
1

k!

∞
∑

i=k+1

γi

(i − k)!

= N

(

1 − α

α

)2
γk

k!

∞
∑

i=1

γi

i!
= N

(

1 − α

α

)2
γk

k!
(eγ − 1)

= N

(

1 − α

α

)2
γk

k!

(

α

1 − α

)

= N

(

1 − α

α

)

γk

k!
= ak

D. Proof of Proposition 2

Proof. The proof for the finite and infinite dimensional
cases are similar, so we include only the proof for the infi-
nite dimensional case here. We assume, as in the hypothe-
sis, thatp is fixed. ClearlyPk,p is identical for allk if and
only if 1 − Pk,p is identical for allk as well. By defini-
tion, 1 − Pk,p is the probability that an adversary control-
ling proportionp of the assignments isnot detected when
cheating on a task of which she controlsk copies. So, let
x̄ = (x1, x2, . . .) be a distribution that requires the mini-
mum number of tasks from all distributions inE∞. Let T
be an arbitrary task,Ak be the event that the adversary has
been assigned exactlyk copies of this task, and letn be
the multiplicity of the task (i.e., the total number of times
the task has been assigned in the computation according to
distributionx̄). By the definition of conditional probability,
we have

1 − Pk,p = P (n = k|Ak) =
P (Ak|n = k)P (n = k)

P (Ak)
.

Now,P (n = k) = xk/N. Thus,

1 − Pk,p =
pk xk

N
∑∞

i=k pk(1 − p)i−k
(

i
k

)

xi

N

=
xk

∑∞
i=k(1 − p)i−k

(

i
k

)

xi

.

By assumption, the expression1 − Pk,p is independent of
k. Since taking the limit asp → 0 preserves this property,
we have that for all positive integersk

lim
p→0

xk
∑∞

i=k(1 − p)i−k
(

i
k

)

xi

=
xk

∑∞
i=k limp→0(1 − p)i−k

(

i
k

)

xi

=
xk

∑∞
i=k

(

i
k

)

xi

=
xk

xk +
∑∞

i=k+1

(

i
k

)

xi

where the switch of the limit and the sum is justified by
a straightforward application of the Lebesgue Dominated
Convergence Theorem [8]. Letη be the common value of
these fractions. That is

xk

xk +
∑∞

i=k+1

(

i
k

)

xi

= η (3)

for all positive integersk. Clearly0 < η < 1. Also,

xk =
η

1 − η

∞
∑

i=k+1

(

i

k

)

xi.

Since

xk ≤
(

1 − α

α

) ∞
∑

i=k+1

(

i

k

)

xi

we must have
η

1 − η
≤ 1 − α

α
.

The result will follow if we can show that this inequality is
in fact equality. So, suppose for contradiction that

η

1 − η
<

1 − α

α
.

Then1 − η > α. Now, the expression on the left hand
side of (3) is the asymptotic probability that the adversary
is not caught while trying to cheat on a task of which she
possessesk copies. Thus the asymptotic probability that
the adversaryis caught trying to cheat on a task of which
she possessesk copies is1 − η. But 1 − η > α which
implies that the minimal distribution of tasks satisfying all
constraints at detection thresholdα actually satisfies the
constraints for the higher threshold1 − η. This is a contra-
diction, since (all other factors being equal) the total num-
ber of assignments required is a strictly increasing function
of α.

E. Proof of Proposition 3

Proof. We copy the technique used in [3]. Choose a posi-
tive integerk and letAk be the event that the adversary has

been assigned a given taskk times. Letn be the multiplic-
ity of the task. Then

1 − Pk,p = P (n = k|Ak) =
P (Ak|n = k)P (n = k)

P (Ak)
.

If we let γ = ln
(

1
1−α

)

, thenP (Ak|n = k) = pk,

P (Ak) =

∞
∑

i=k

pk(1 − p)i−k

(

i

k

)

P (n = i),

and

P (n = i) =

(

1 − α

α

)

γi

i!
.

So

1 − Pk,p =
pk
(

1−α
α

)

γk

k!
∑∞

i=k pk(1 − p)i−k
(

i
k

) (

1−α
α

)

γi

i!

=
γk

k!
∑∞

i=k(1 − p)i−k
(

i
k

)

γi

i!

=
γk

k!
∑∞

i=k(1 − p)i−k i!
k!(i−k)!

γi

i!

=
(γ(1 − p))k

∑∞
i=k(1 − p)i γi

(i−k)!

=
(γ(1 − p))k

∑∞
i=0

(γ(1−p))i+k

i!

=
(γ(1 − p))k

(γ(1 − p))k
∑∞

i=0
(γ(1−p))i

i!

=
1

e(1−p)γ
= (1 − α)1−p

The result follows.

