An Alternate Multiplicity-2 Task Assignment Scheme for
Distributed Computations

Doug Szajda Jason Owen

Barry Lawson

Arthur Charlesworth Ed Kenney

University of Richmond
Richmond, Virginia
{dszajda, wowen, blawson, acharles, ekenney2} @richmond.edu

Abstract

Many recent large-scale distributed computing appli-
cations utilize spare processor cycles of personal com-
puters. The resulting distributed computing platforms
provide computational power that previously was avail-
able only through the use of expensive supercomput-
ers. However, distributed computations running in un-
trusted or unstable environments raise a number of
concerns, including the potential for disrupting com-
putations and many security issues. It is shown that
the standard techniques for managing these issues, i.e.
replication and/or redundancy, still do not always re-
solve situations where computational integrity is threat-
ened. This paper presents a generalized strategy for
applying redundancy in a manner that is tunable and
provides several advantages. In addition, the improve-
ment is achieved without an increase in the amount of
computation required by participants and only a slight
increase in task tracking overhead.

Keywords: distributed computation, probabilistic
verification, collusion, security

1. Introduction

The advent of large-scale distributed computing
platforms, consisting of many personal computers con-
nected to the Internet, provides researchers and prac-
titioners a new and relatively untapped source of com-
puting power. By utilizing the spare processing cycles
of these computers, the computations are inexpensive
and the harnessed power can rival that of a supercom-
puter (when many microprocessors are involved). In a
volunteer distributed setting, the computation is eas-
ily divisible into independent tasks, each of which can
be processed by a typical personal computer in a few
hours. A participant downloads code from the super-
visor of the computation in order to establish an ex-
ecution environment in which the supervisor can ex-
ecute tasks. Each task is assigned and dispatched to

a participant, and upon completion of the task signif-
icant results are returned to the supervisor. Due to
the fact that computations are executed outside of the
control of the supervisor, participants can intentionally
or unintentionally corrupt results, or possibly attempt
to claim credit for work not completed.

The common technique for securing these computa-
tions is to utilize a redundant task assignment strategy
or “simple redundancy” — i.e., assigning each task to
two participants and therefore at least doubling the re-
quired cost of the computation. If the two returned
tasks do not match, this is a signal of a potential prob-
lem to the supervisor and the task can be checked man-
ually. If the two returned tasks do match, it is usually
assumed that the task was computed correctly. How-
ever, this is a significant weakness; in many distributed
computing platforms, there are no mechanisms in place
to prevent someone from obtaining multiple (even hun-
dreds of) user names and downloading hundreds or
even thousands of tasks!. Thus, many participants
could actually be controlled by a single individual and
computing tasks in a single administrative domain or
even on the same machine — thus allowing for an envi-
ronment where computational integrity is endangered
(due to pervasive software bugs or viruses). In addi-
tion, a malicious participant could cheat if she con-
trolled matching tasks or she could collude with one or
more participants under her control. To this end, we
define any participant who compromises the integrity
of the computation, whether intentionally or uninten-
tionally, as an adversary.

Our scheme is motivated by the notion that a super-
visor who accepts the increased cost of computation as-
sociated with simple redundancy should receive a bet-
ter return on this investment. Specifically, these same
computational resources can be allocated such that an
adversary is much more likely to be detected, and such
that detection can potentially reveal the identities of

1For example, the Search for Extra-Terrestrial Intelligence
project [4] conducted by SETI@Home has experienced days in
which more than 5000 new user names were assigned, and boasts
participants who have averaged more than 1000 tasks completed
each day.

HEOOO 606
B e e 66 6
OOCONOIONO

Figure 1. Alternative ways of assigning three
tasks to six participants. Tasks in the top row
are assigned using simple redundancy.

their colluding cohorts. In computer security, the de-
tection of colluding adversaries is often difficult and
expensive. Our mechanism requires no additional com-
putation on the part of the participants, and only rea-
sonable increases in resource management and book-
keeping costs for the supervisor.

As a simple example, consider a traveling salesper-
son computation involving only four cities, and as-
sume that a participant can only compute the cost
of two circuits. Let c1,¢a,...,ce denote the six non-
equivalent circuits?. Without redundancy, this would
require three participants (each computing the cost of
two circuits), so simple redundancy requires six, which
we denote by Py, Ps, ... Ps. Figure 1 shows two possible
ways of assigning two circuits to each participant. In
the first assignment (simple redundancy), each subset
is assigned to two participants, so for example P; and
P, act as checks on each other’s work. If they are both
controlled by a single adversary, then the costs returned
for circuits ¢; and co are compromised since they can
return identical incorrect results that the supervisor
will assume is correct. Now consider the second, alter-
native assignment in Figure 1. Here, the work of P; is
checked in part by P, and in part by P5. Thus, in the-
ory the supervisor can determine whether Pj is collud-
ing with P; and P5 by checking whether the cost of c3
has been correctly computed. Of course, an intelligent
adversary familiar with this strategy would not return
invalid results every time they received matching tasks
or subtasks. Regardless, simple redundancy precludes
even the possibility of efficiently identifying additional
conspirators. The modified strategy provides this ad-
ditional information without increasing the computa-
tional burden on any of the tasks.

Furthermore, if the supervisor intends to verify one
full task worth of work in order to detect malicious
activity, the two scenarios pose interesting arrange-
ments. Under simple redundancy, the supervisor can

2That is, if the four cities are A, B, C, and D, then we
don’t want to compute each of ABCDA, BCDAB, CDABC,
and DABCD when it suffices to compute only one of them.

only check either of {c1, 2}, {c3, ca}, or {cs, cg} (due
to the implied task granularity) to yield the possibil-
ity of detecting at most one colluding pair. Under the
alternative scheme, the supervisor is free to check any
two circuits from among the six in the computation.
This leads to the possibility of identifying at most two
colluding pairs. Thus, the supervisor gains twice the
level of detection with the same amount of work.

The strategies presented in this paper represent a
spectrum of possible task assignments. At one ex-
treme is simple redundancy (the least expensive strat-
egy), which provides the least protection from collud-
ing adversaries, the smallest probability of detecting
colluding adversaries, and no information about the
identities of additional conspirators. At the other ex-
treme is an assignment strategy we call vertical par-
titioning, which is of theoretical interest but does not
scale to the dimensions of the typical distributed com-
putation. Vertical partitioning is the most expensive
of our strategies, but provides the greatest protection
from colluding adversaries, the highest probability of
detecting adversaries, and when detection occurs, the
potential to efficiently identify all of the colluding par-
ticipants when security is an issue. This is achieved
through a distribution scheme in which for each pair of
participants P and @, @ checks the work of P; more-
over, each part of the work of P is checked by the
collective work of the participants different from P.
The primary cost of vertical partitioning is task track-
ing overhead in the form of increased memory and in-
creased database query times. However, the amount of
computation required by the participants is unchanged.
Between these two extremes lies a wide range of assign-
ments we call clustering. By varying parameter values,
the supervisor can choose the level of partitioning that
is both suited to their specific application and provides
the desired level of protection.

We note here that our strategy is not applicable to
every distributed computation. In particular, we re-
quire that tasks can be divided into subtasks, a prop-
erty absent from some distributed computations. Se-
quential computations, for which the basic model is the
repeated iteration of a function on a small number of
inputs, cannot be subtasked if each task is assigned
only a single seed value. Protein folding (e.g. the
Folding@Home project [1]) and some Mersenne Prime
searches (e.g. GIMPS [2]), for example, fall under this
restriction. FExamples of applications for which our
strategy is appropriate include DNA and protein se-
quence comparisons, exhaustive regression, and graph-
ics rendering.

The remainder of the paper is organized as follows.
In Section 2 we present our model of the distributed
computations and platforms under consideration and
introduce terminology. Section 3 presents the vertical
partitioning scheme. Though impractical in its pure
form, vertical partitioning provides the basis for the

Tasks
1 2 3 4
A0 | BO | CO | DO
Al | B1|Cl1| D1
A2 | B2 | C2 | D2
A3 | B3| C3 | D3
A4 | B4 | C4 | D4
A5 | B5 | C5 | D5
A6 | B6 | C6 | D6

(a) N = 4 tasks each divided into 2N — 1 = 7 subtasks

Participant Assignments
1 2 3 4 5 6 7 8
A0 | AO | A1 | A2 | A3 | A4 | A5 | A6
A1 | BO| B0 | Bl | B2 | B3| B4 | B5
A2 | Bl1 | B6 | B6|Co|Cl]|C2|C3
A3 | B2 | Co|C4|C4|C5]|C6| DO
A4 | B3| Cl1|Cs5|D1|D1|D2| D3
A5 | B4 | C2 | C6 | D2 | D4 | D4 | D5
A6 | B5 | C3 | DO | D3| D5 | D6 | D6

(b) Assignment of subtasks to the 2N = 8 participants

Table 1. A division of four tasks and associ-
ated assignment of subtasks

clustering scheme presented in Section 4, which ex-
plains how the ideas of vertical partitioning can be
applied in practice. Finally, present our conclusions
in Section 5.

2. Terminology

To introduce the language used to describe the
scheme presented in this paper, consider the example
structure of assignments of a hypothetical computa-
tion from Table 1. As depicted in (a), the computation
is first divided into N = 4 tasks. Each task is then
divided into 2N — 1 = 7 subtasks. Then 2N = 8 com-
binations, each of 2N — 1 = 7 subtasks, are created
(one for each of the 2N = 8 participants) such that
each subtask appears in exactly two combinations (the
details of creating the combinations are presented in
Section 3). An assignment, i.e., one combination of
subtasks, is then presented to each participant to com-
pute. Moreover, each term defined above is represented
in Table 1 as follows:

e the computation corresponds to the entire table in

(a);
e cach task corresponds to a column in (a);

e cach subtask corresponds to a single element (e.g.,
Bs) from a column in (a);

e each assignment to a participant corresponds to a
column in (b).

Note that for simple redundancy a task consists of only
one subtask; in this context, a task, subtask, and as-
signment are equivalent.

The computing platform consists of a supervisor— a
trusted central control server or server hierarchy coor-
dinating many (typically 10* to 107) personal comput-
ers in a “master-slave” relationship. The slave nodes,
or participants are given work assignments by the su-
pervisor. Because tasks in a computation are indepen-
dent, communication is necessary (and allowed) only
between individual participants and the supervisor. In
some cases participants receive remuneration, in one of
a variety of forms, for completing their associated work
assignment.

3. Vertical Partitioning

Here, we assume that there are N tasks that are to
be assigned to 2N participants such that

e Each subtask is assigned to exactly two partici-
pants.

e Each pair of participants share exactly one sub-
task.

Since there are 2N participants, each can be paired
with 2N —1 other participants, so tasks must be divided
into 2N — 1 subtasks. Moreover since the number of
subtasks in the computation, N(2N — 1), is the same
as the number (29’) of pairs of participants, such an
assignment is always possible. An example assignment
of 4 tasks to 8 participants is shown in Table 1.

There are two immediate consequences of assigning
tasks in this way. First, subtasking shrinks the check-
able unit of execution, which both reduces the burden
of checking individual returned results, and allows the
verification process to cover more of the computation.
The result is that the supervisor is given finer con-
trol over which results are verified. The second is that
it spreads the responsibility for verifying the work of
a single participant from one other participant to all
other participants. This distribution creates the po-
tential for efficient identification of all colluding parties
once a single colluding pair have been identified.

The beneficial effects of shrinking the size of check-
able execution units should not be discounted. For
many applications, the only way for the supervisor to
verify a returned result is to recompute the entire task.
This is expensive, and obviously cannot be done for any
significant proportion of the tasks. Subtasking, how-
ever, allows the supervisor to effectively check the work
of N participants for the cost of verifying a single task.
The improvement in the probability of detecting mali-
cious activity is the results of this quantization effect.

In essence, the supervisor who uses simple redundancy
is locked into performing checks at the task granularity,
which limits the efficacy of the checking effort.

There are other costs associated with vertical par-
titioning, primarily stemming from the management
of subtasks. Subtasking introduces at least a factor
2N — 1 increase in the cost of maintaining any task as-
signment database, since tracking a subtask is every bit
as expensive as tracking a full task. For large N values
this will likely become prohibitive. Handling the fac-
tor 2N — 1 increase in the number of returned results
will also pose difficulties, and is a problem that can not
always be easily handled by adjusting the criterion by
which results are deemed significant. Tuning applica-
tions so that tasks return the appropriate number of
significant results is often difficult, and involves more
than simply narrowing the filter, since there is always
the danger of creating a filter so small that important
results will be missed. Subtasking only exacerbates this
tuning problem.

3.1 Strategy Analysis

Here, we present several quantities related to the
potential for comprised integrity in a distributed com-
putation. The derivation of these quantities are rather
involved but are explicitly developed in [5]. Therein, it
is shown that if an adversary controls a proportion p of
the 2N participants in the computation, then the ex-
pected number of tasks and subtasks controlled under
either strategy is the same, and is given by

E(# of subtasks) = pN(2pN —1)
pN(2pN — 1)
2N —1

However, it is also shown in [5] that vertical partition-
ing provides a benefit in terms of stability, since the
variance of the number of subtasks under control of an
adversary is zero. This is not the case with simple re-
dundancy (unless the adversary controls either all of
the participants or none of them), where the variance
of the number of subtasks is given by

Var(# subtasks) =
2pN?(2pN — 1)(1 —p)(2N(1 —p) — 1)
2N -3 '
Note that this function is symmetric about the line
p = 1/2. So, although the means are equal for the two
methods, the variances are not.
In addition, it is shown in [5] that under simple re-
dundancy the probability that an adversary is detected
by a supervisor checking m tasks is given by

(N —m)!

(3n)

E(# of tasks) =

P(detecting adversary) =1 —

PN 22pN—2k

k=Tp, N

(N —k)! 1 1
2 (N —k —m)! (2pN — 2k)! k! (N + k — 2pN)!’

where 7, n is defined by 7, y = max{0,2pN —N}. The
vertical partitioning strategy with a supervisor check-
ing k subtasks has a detection probability given by

(N(2N—1)—];:N(2pN—1))

1- (N(2N71))
k

To be clear on terminology, we sometimes refer to
both the number of tasks compromised or checked in
vertical partitioning and the number of subtasks com-
promised or checked in vertical partitioning. Techni-
cally the term “task” does not apply to vertical par-
titioning, nor does the term “subtask” apply to sim-
ple redundancy, since an adversary cannot compromise
work at a subtask granularity in the latter.

3.2 Adversary Detection

Here, the probabilities of detecting malicious activ-
ity are considered assuming that the adversary will re-
turn an invalid result if and only if they have either
both copies of a task (in simple redundancy) or both
copies of a subtask (in vertical partitioning). [Certainly
an intelligent, malicious adversary with knowledge of
our strategy will not attempt to return invalid results
at every opportunity presented them, but will instead
likely attempt to game the system to their advantage.]
Our assumption allows a tractable analysis that is valu-
able as a means of comparing the performance of ver-
tical partitioning with that of simple redundancy.

We begin by considering vertical partitioning. Let
the exact number of subtask pairs assigned to the ad-
versary is L(2L — 1), where L = pN, and there are a
total of N(2N —1) distinct subtasks. Thus, if we verify
a single randomly chosen subtask, the probability that
we detect the adversary is (L(2L —1))/(N(2N —1)).
More generally, if we instead verify k& of the subtasks,
then the probability of detecting the adversary is given
by

N(2N-1)—L(2L—1) oL — 1) \
SR (o ey

(N(?Jkal)) - N(2N -1

where the quantity to the right of the inequality is a
lower bound for the quantity using a binomial proba-
bility calculation. For simple redundancy, and specif-
ically the situation in which the supervisor attempts
to detect cheating by verifying (i.e. computing) a sin-
gle task, the probability of detecting the adversary un-
der simple redundancy is much easier. If an adversary
controls exactly k tasks, then the probability of the
supervisor randomly choosing a task controlled by the
adversary (from among N tasks) is % Since the ex-
pected number of tasks controlled by the adversary is
L(2L — 1)/(2N — 1), the probability of catching the

adversary is

L(2L-1)1 _ p(2pN -1)
IN—-1 N 2N -1

Note that this is the same as the probability derived for
vertical partitioning with the supervisor checking only
a single subtask. Thus vertical partitioning achieves
in this case an equal level of protection with a factor
2N — 1 reduction in computation cost.

To generalize our simple redundancy analysis by
considering the probability of detecting a cheater when
the supervisor verifies m full tasks rather than just one,
the probability in this case is given by

i — (me)!x

(1)

N —k)! 11
3 ()

22L—2k

(N —k—m)! (2L — 2k) Kl (N + k — 2L)!"

k:TL,N

4 Clusters: Practical Vertical Parti-

tioning

Real distributed computing can consist of millions
of tasks distributed to millions of participants. Ver-
tical partitioning is not practical at these orders of
magnitude. Using this strategy in practice thus re-
quires breaking the computation into several clusters,
each of which consists of a reasonable sized number
of work units for a given application, with each clus-
ter employing a vertical partitioning strategy. To keep
our notation as consistent with the previous sections
as possible, we will assume for this section that the en-
tire computation consists of M work units. These are
to be distributed to 2M participants, and the M work
units are to be divided into C clusters each containing
N work units. Thus, C' = M/N. The N work units in
each cluster are to be distributed to 2N participants
according to the vertical partitioning strategy.

Clustering has several advantages over pure vertical
partitioning. First, unlike vertical partitioning, an ad-
versary controlling multiple participants is no longer
guaranteed to possess duplicates of any particular sub-
task, since tasks in different clusters are disjoint. In
addition, the relatively low N values as compared to
vertical partitioning lead to decreased task tracking
overhead, and makes the strategy practical for real
computations. Most importantly, the notion of clus-
tering provides the supervisor of a computation with
significant flexibility — by varying the parameters N
(or equivalently C), the entire spectrum from simple
redundancy (clustering with N = 1 and C = M) to
vertical partitioning (N = M and C = 1) can be cov-
ered.

4.1 Analysis of Clustering

We examine here how the introduction of clustering
affects several of the probabilistic quantities previously
considered. The derivations for the exact expressions
of these probabilities are again given in [5]. To consider

the expected number of tasks under the control of the
adversary if the computation uses a clustering scheme
(once again assuming that the adversary controls pro-
portion p of the 2M participants in the computation,
for a total of 2pM participants), let {C1,Cs,...,Cc}
denote the clusters. Vectors are used to describe spe-
cific assignments of participants to the adversary, with
v = (k1, ke, ..., kc) denoting the event that the adver-
sary has been assigned exactly k; participants in cluster
C;. Such an assignment must of course always satisfy
ZiC:l k; = 2pM, where 2pM must be an integer (so p
is constrained). From [5], the expected number of sub-
tasks under control by an adversary controlling 2pM
participants is given by

1 1
E(# of tasks) = —— —-—~ X
2N -1 (22;%4)
c c
IN ks
> 1))
v=(k1,....,kc)€E i=1 j=1

There are several special (but non-trivial) cases of
input parameters (e.g. p = (2pM —1)/(2M — 1)) for
which one can easily calculate this quantity. In each
case, the value is identical to the values obtained for
both pure vertical partitioning and simple redundancy.
Moreover, we have computed several values for nontriv-
ial parameter settings, and again in each case the ex-
pected number of tasks matches the values obtained for
both simple redundancy and vertical partitioning. We
thus conjecture, but have not yet been able to prove,
that this expected value is equal to the expected val-
ues for simple and vertical partitioning regardless of
the value of C.

From [5], the probability of detecting an adversary
who controls a single subtask, given that the supervisor
verifies m subtasks, is given by

(M(2N—1)—T(v))
ZP(V) (1 - (M(zygrq))))

veé m

where

c
P = 11 ().
(2pM) i=1 v

Figure 2 illustrates how this probability (with a few
sample C values) compares with those obtained for sim-
ple redundancy and vertical partitioning. In this graph,
we assume that the adversary has been assigned ex-
actly two participants and in a manner most favorable
for disruption. That is, in the data for simple redun-
dancy, we assume that the adversary has been assigned
identical work units and in clustering we assume that
the two assigned participants are in the same cluster.
In each case we assume that one equivalent task is ver-
ified by the supervisor, so in pure vertical partitioning,
2M — 1 subtasks are verified, while in clustering 2N —1

Simple Redundancy (M =4, N =1, C = 4)

Tasks Participant Assignments
1 2 3 4 1 2 3 4 5 6 7 8
A0 | BO | CO | DO A0 | A0 || BO| Bo || CO | CO || DO | DO
Clustering (M =4, N =2,C =2)
Tasks Participant Assignments
1 2 3 4 1 2 3 4 5 6 7 8
A0 | BO | CO | DO A0 | A0 | A1 | A2 || CO|CO|Cl|C2
Al | B1|C1| D1 A1 | BO|BO| Bl | Cl1|DO0O|DO| DI
A2 | B2 | C2 | D2 A2 | Bl1 | B2 | B2| C2|D1|D2| D2
Vertical Partitioning (M =4, N =4, C =1)
Tasks Participant Assignments
1 2 3 4 1 2 3 4 5 6 7 8
A0 | BO | CO | DO A0 | A0 | A1 | A2 | A3 | A4 | A5 | A6
Al | Bl1|C1|D1 Al | BO | Bo|B1l|B2|B3|B4|B5
A2 | B2 | C2| D2 A2 | B1 | B6|B6|Co|Cl|C2|C3
A3 | B3| C3| D3 A3 | B2 | CoO|C4]C4|C5|C6| DO
A4 | B4 | C4 | D4 A4 | B3| Cl1|C5|D1|D1|D2| D3
A5 | B5 | C5 | D5 A5 | B4 | C2|C6|D2|D4|D4| D5
A6 | B6 | C6 | D6 A6 | B5 | C3 | DO | D3 | D5 | D6 | D6

Table 2. Task division and assignment for simple redundancy, clustering, and vertical partitioning.

Assignments shown for

M = 4 participants. The clustering example uses

C=2.

Quantity Simple Red. (S) | Clusters (C) | Vertical Partitioning (V) | Summary
rows in matrix 1 2N —1 2M — 1 S<C<LV
P(adversary cheats) S SV 1 S<C<V
tasks compromised 1 5 Nl_l ﬁ S>C>V
, 77
Expected # tasks compromised pM(2pM—1) pM@2pM—1) o pM(2pM—1) S=C=V
(ZNL—ll) M1 M(2M2—A14)—;1;M(2pM—1)
P(adv. detected, 1 task checked) = 1 (Mzi?{;l)) S<C<V
Table 3. Comparing simple redundancy, clustering, and pure vertical partitioning, with M tasks in

the computation, and N tasks in each cluster. The detection probability for clusters is omitted due

to space considerations.

subtasks are verified. As expected, the probability for
clustering falls between that for vertical partitioning
and that for clustering, with the curve approaching
simple redundancy as C' increases, and pure vertical
partitioning as C' decreases. Some of our findings are
summarized in Table 3.

An important question for a supervisor considering
the use of our strategy is the optimum cluster size. The
optimum cluster size will also depend in part on appli-
cation characteristics, including factors such as the to-
tal number of tasks appropriate for a computation, the
structure of tasks, the inherent verifiability of tasks,
and especially resilience to incorrect results. When

an adversary receives multiple copies of the same task
in a computation where results are checked via sim-
ple redundancy, an entire task is compromised, and
this compromise will likely evade detection. The rela-
tively large variance associated with simple redundancy
means there is a nontrivial probability that an adver-
sary could be assigned several pairs of matching tasks.
At the same time, with clustering an adversary control-
ling multiple participants is guaranteed to have match-
ing subtasks, but the damage they can inflict at one
time is limited to the size of a subtasks. Applications
such as graphics rendering, Monte Carlo simulations,
and genetic algorithms that can tolerate small amounts

VaS
AAA A simple redundancy

+ vertical partitioning]
O clustering: C =6 7|
® clustering: C = 4
<& clustering: C = 3

! ! 1
0 0.2 0.4 0.6 0.8 1

Proportion of malicious participants

0.2

Probability adversary is detected

Figure 2. Comparing detection probabilities
under the assumption that the adversary re-
turns a bad result for any task or subtask she
controls, for M = 60 tasks and various cluster
sizes.

of incorrect results but may be badly damaged by the
loss of an entire task (or more) will benefit from the
stability provided by the clustering strategy.

4.2 Augmenting our strategy with other schemes

Our clustering strategy is extensible in the sense
that it can be used in conjunction with some recently
proposed security measures. The ringer schemes of
Golle and Mironov [3], and Szajda, et al. [6] can both
improve the probability of detecting malicious activ-
ity and at the same time decrease some of the costs
associated with our strategy. The ringer strategy in-
volves seeding tasks with precomputed results in such a
manner that the identities of seeds are difficult for the
adversary to determine and that the values are guar-
anteed to be returned as significant by an honest par-
ticipant. Like the present scheme, the ringer strategy
provides the supervisor with improved verification ca-
pabilities. Even when a participant returns all ringers
in a task, however, there is no guarantee that the re-
mainder of the task has been executed correctly, or
even that it has been executed at all—a malicious par-
ticipant may be able to identify the ringers, or simply
get lucky. When used in conjunction with clustering,
a ringer strategy further increases the number of tasks
that can be verified which corresponds to a higher prob-
ability of detecting an adversary, malicious or not.

5. Conclusions

We have presented a novel means of applying re-
dundancy to distributed computations. This technique

modifies redundancy by assigning work to participants
in a manner that increases the number of participants
that check the work of a single participant. We pre-
sented analysis that showed that the expected number
of tasks compromised is the same as for simple redun-
dancy, but that the effect of our assignment scheme
is an increase in the ability to detect colluding adver-
saries, as well as the potential to identify all colluding
co-conspirators once one colluding pair has been iden-
tified. These enhancements are achieved without in-
creasing the computational burden on the participants,
and with acceptable increases in task tracking overhead
imposed on the supervisor. Moreover our strategy pro-
vides greater stability in the potential for collusion for
an adversary with a given proportion p of participants.
We further showed that our general strategy is tunable,
and that by varying input parameters, the supervisor
of a computation can choose a level of protection that
covers a spectrum from simple redundancy at one ex-
treme to vertical partitioning at the other.

References

[1] The Folding@home Project. Stanford University.
http://www.stanford.edu/group/pandegroup/cosm/.

[2] The Great Internet Mersenne Prime Search.
http://www.mersenne.org/prime.htm.

[3] P. Golle and I. Mironov. Uncheatable distributed com-
putations. In Proceedings of the RSA Conference 2001,
Cryptographers’ Track, pages 425-441, San Francisco,
CA, 2001. Springer.

[4] The Search for Extraterrestrial Intelligence project.
University of California, Berkeley.
http://setiathome.berkeley.edu/.

[5] D. Szajda, A. Charlesworth, B. Lawson, J. Owen, and
E. Kenney. Collusion resistant redundancy for dis-
tributed metacomputations. Technical Report TR-05-
02, Richmond, VA, 2005.

[6] D. Szajda, B. Lawson, and J. Owen. Hardening func-
tions for large-scale distributed computations. In Pro-
ceedings of the 2003 IEEE Symposium on Security and
Privacy, pages 216—224, Berkeley, CA, May 2003.

